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Anomalous scaling in the anisotropic sectors of the Kraichnan model of passive scalar advectio
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Kraichnan’s model of passive scalar advection in which the driving~Gaussian! velocity field has fast
temporal decorrelation is studied as a case model for understanding the anomalous scaling behavior in the
anisotropic sectors of turbulent fields. We show here that the solutions of the Kraichnan equation for the
n-order correlation functions foliate into sectors that are classified by the irreducible representations of the
SO(d) symmetry group. We find a discrete spectrum of universal anomalous exponents, with a different
exponent characterizing the scaling behavior in every sector. Generically the correlation functions and structure
functions appear as sums over all these contributions, with nonuniversal amplitudes that are determined by the
anisotropic boundary conditions. The isotropic sector is always characterized by the smallest exponent, and
therefore for sufficiently small scales local isotropy is always restored. The calculation of the anomalous
exponents is done in two complementary ways. In the first they are obtained from the analysis of the correla-
tion functions of gradient fields. The theory of these functions involves the control of logarithmic divergences
that translate into anomalous scaling with the ratio of the inner and the outer scales appearing in the final result.
In the second method we compute the exponents from the zero modes of the Kraichnan equation for the
correlation functions of the scalar field itself. In this case the renormalization scale is the outer scale. The two
approaches lead to the same scaling exponents for the same statistical objects, illuminating the relative role of
the outer and inner scales as renormalization scales. In addition we derive exact fusion rules, which govern the
small scale asymptotics of the correlation functions in all the sectors of the symmetry group and in all
dimensions.

PACS number~s!: 47.27.Gs, 47.27.Jv, 05.40.2a
ar
a
im
th

io
re
le
rn
l
ity
th
an
n
an

a
th

n
et
b
r

-
ns
rv
er
ca

are

s
n-

ta-
er-

that
z-
on

oup
to
epa-
ct

t of

le of
a-
. As
cale
ad-

eld
-
al-
to

za-
d by
eo-
rs in

of
ales,
I. INTRODUCTION

The aim of this paper is twofold. On the one hand, we
interested in the effects of anisotropy on the universal
pects of scaling behavior in turbulent systems. To this a
we present below a theory of the anomalous scaling of
Kraichnan model of turbulent advection@1# in anisotropic
sectors that are classified by the irreducible representat
of the SO(d) symmetry group. On the other hand, we a
interested in clarifying the relationship between ultravio
and infrared anomalies in turbulent systems. Again, it tu
out that the Kraichnan model is an excellent case mode
which this relationship can be exposed with complete clar
As is well known by now, the Kraichnan model describes
advection of a passive scalar by a velocity field that is r
dom, Gaussian, andd correlated in time. The correlatio
functions of the field scale in their spatial dependence,
the main question is what are the scaling~or homogeneity!
exponents of the statistical objects of the scalar field that
induced by the given value of the scaling exponent of
advecting velocity field.

The two issues discussed in this paper have an importa
that transcends the particular example that we treat in d
in this paper. The first is the role of anisotropy in the o
served scaling properties in turbulence. We have shown
cently that in the presence of anisotropic effects~which are
ubiquitous in realistic turbulent systems! one needs to care
fully disentangle the various universal scaling contributio
Even at the largest available Reynolds numbers the obse
scaling behavior is not simple, being composed of sev
contributions with different scaling exponents. The statisti
PRE 621063-651X/2000/62~4!/4904~16!/$15.00
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objects like structure functions and correlations functions
characterized by one scaling~or homogeneity! exponent only
in the idealized case of full isotropy, or infinite Reynold
numbers when the scaling regime is of infinite extent. A
isotropy results in mixing in various contributions to the s
tistical objects, each of which is characterized by one univ
sal exponent, but the total is a sum of such contributions
appears not to ‘‘scale’’ in standard log-log plots. By reali
ing that the correlation functions have natural projections
the irreducible representations of the SO(3) symmetry gr
we could offer methods of data analysis that allow one
measure the universal scaling exponents in each sector s
rately. In this paper we show that this foliation is an exa
property of the statistical objects that arise in the contex
the Kraichnan model.

The second issue that transcends the particular examp
the Kraichnan model is the identification of the renormaliz
tion scales that are associated with anomalous exponents
has been already explained before, the renormalization s
that appears in the correlation functions of the passively
vected scalar field is the outer scale of turbulenceL. On the
other hand, the theory of correlations of gradients of the fi
expose in the inner~or dissipative! scale an additional renor
malization scale. Having below a theory of anomalous sc
ing in various sectors of the symmetry group allows us
explain clearly the relationship between the two renormali
tion scales and the anomalous exponents that are implie
their existence. Since we expect that Kolmogorov-type th
ries, which assume that no renormalization scale appea
the theory, are generally invalidated by the appearance
both the outer and the inner scales as renormalization sc
4904 ©2000 The American Physical Society
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PRE 62 4905ANOMALOUS SCALING IN THE ANISOTROPIC . . .
the clarification of the relation between the two is importa
also for other cases of turbulent statistics.

The central quantitative result of this paper is the expr
sion for the scaling exponentzn

( l ) , which is associated with
the scaling behavior of then-order correlation function~or
structure function! of the scalar field in thel th sector of the
symmetry group. In other words, this is the scaling expon
of the projection of the correlation function on thel th irre-
ducible representation of the SO(d) symmetry group, withn
and l taking on even values only,n50,2,... andl 50,2,...,

zn
~ l !5n2eFn~n1d!

2~d12!
2

~d11!l ~ l 1d22!

2~d12!~d21! G1O~e2!.

~1.1!

The result is valid for any evenl<n, and toO(e) wheree is
the scaling exponent of the eddy diffusivity in the Kraichn
model ~and see below for details!. In the isotropic sector (l
50) we recover the well known result of@2#. It is notewor-
thy that for higher values ofl the discrete spectrum is
strictly increasing function ofl. This is important, since it
shows that for diminishing scales the higher order sca
exponents become irrelevant, and for sufficiently sm
scales only the isotropic contribution survives. As the scal
exponent appears in power laws of the type (R/L)z, with L
being some typical outer scale andR!L, the larger the ex-
ponent is, the faster is the decay of the contribution as
scaleR diminishes. This is precisely how the isotropizatio
of the small scales takes place, and the higher order e
nents describe the rate of isotropization. Nevertheless fo
termediate scales or for finite values of the Reynolds
Peclet numbers the lower lying scaling exponents will app
in measured quantities, and understanding their role and
entangling the various contributions cannot be avoided.

The organization of this paper is as follows: In Sec. II w
recall the Kraichnan model of passive scalar advection,
introduce the statistical objects of interest. In Sec. III we
up the calculation of the correlation functions of gradients
the field. It turns out that it is most straightforward to com
pute the fully fused correlation functions of gradient field,
these objects depend only on the ratio of the outer and in
scales. We compute these quantities and their exponen
first order ine. We introduce the appropriate irreducible re
resentations of the SO(d) symmetry group and evaluate th
scaling exponents in all its sectors. In Sec. IV we turn to
correlation functions of the passive scalar field itself, a
compute the scaling exponents of the structure function
the presence of anisotropy, again correct to first order ine.
To this aim we compute the zero modes in all the sector
the symmetry group. One of the interesting points of t
paper is that the results of this calculation and the calcula
via the correlations of the gradient fields gives the same
sults for the scaling exponents if one accepts the fusion ru
To clarify the issue we prove the fusion rules here in all
sectors of the symmetry group by a direct computation of
fusion of the zero modes. In Sec. V we offer a summary a
a discussion.
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II. KRAICHNAN’S MODEL OF TURBULENT ADVECTION
AND THE STATISTICAL OBJECTS

The model of passive scalar advection with rapidly de
rrelating velocity field was introduced by Kraichnan@1# al-
ready in 1968. In recent years@2–7# it was shown to be a
fruitful case model for understanding multiscaling in the s
tistical description of turbulent fields. The basic dynamic
equation in this model is for a scalar fieldT(r ,t) advected by
a random velocity fieldu(r ,t):

@] t2k0¹21u~r ,t !•“#T~r ,t !5 f ~r ,t !. ~2.1!

In this equationf (r ,t) is the forcing. In Kraichnan’s mode
the advecting fieldu(r ,t) as well as the forcing fieldf (r ,t)
are taken to be Gaussian, time and space homogeneous
d correlated in time:

f ~r ,t ! f ~r 8,t8!5F~r2r 8!d~ t2t8!, ~2.2!

^ua~r ,t !ub~r 8,t8!&5Wab~r2r 8!d~ t2t8!. ~2.3!

Here the symbols̄ and ^¯& stand for independent en
semble averages with respect to the statistics off and u,
which are givena priori. We will study this model in the
limit of large Peclet~Pe! number, Pe[ULL/k0 , whereUL

is the typical size of the velocity fluctuations on the ou
scaleL of the velocity field. We stress that the forcing is n
assumed isotropic, and actually the main goal of this pape
to study the statistic of the scalar field under anisotropic fo
ing.

The correlation function of the advecting velocity nee
further discussion. It is customary to introduceWab(R) via
its k representation:

Wab~R!5
eD

Vd
E

L21

l21 ddp

pd1e Pab~p!exp~2 ip•R!, ~2.4!

Pab~p!5Fdab2
papb

p2 G , ~2.5!

were Pab(p) is the transversal projector,Vd5(d
21)V(d)/d, and V(d) is the volume of the sphere ind
dimensions@i.e.,V(2)52p, V(3)54p#: Equation~2.4! in-
troduces the four important parameters that determine
statistics of the driving velocity field:L andl are the outer
and inner scales of the driving velocity field, respective
The scaling exponente characterizes the correlation func
tions of the velocity field, lying in the interval~0,2!. The
factor D is related to the correlation function~2.3! as fol-
lows:

Wab~0!5Ddab~Le2le!. ~2.6!

The most important property of the driving velocity fie
from the point of view of the scaling properties of the pa
sive scalar is the tensor of ‘‘eddy diffusivity’’@1#

kT
ab~R![2@Wab~0!2Wab~R!#. ~2.7!
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The scaling properties of the scalar depend sensitively on
scaling exponente that characterizes theR dependence o
kT

ab(R):

kT
ab~R!}@Le2le#dab , for R@L,

kT
ab~R!}ReFdab2

e

d211e

RaRb

R2 G , l!R!L.

~2.8!

We are interested in the scaling properties of the sc
field. By this we mean the power laws characterizing theR
dependence of the various correlation and response func
of T(r ,t) and its gradients. We will focus on three types
quantities:

~1! ‘‘Unfused’’ structure functions are defined as

Sn~r1 , r̄1 ,...rn , r̄n![^@T~r1 ,t !2T~ r̄1 ,t !#@T~r2 ,t !

2T~ r̄2 ,t !#...@T~rn ,t !2T~ r̄n ,t !#&,

~2.9!

and in particular the standard structure functions are

Sn~R![^@T~r1R,t !2T~r ,t !#n&. ~2.10!

In writing this definition we used the fact that the stationa
and space-homogeneous statistics of the velocity and
forcing fields lead to a stationary and space-homogene
ensemble of the scalarT. If the statistics is also isotropic
then Sn becomes a function ofR only, independent of the
direction ofR. The ‘‘isotropic scaling exponents’’zn of the
structure functions

Sn~R!}Rzn, ~2.11!

characterize theirR dependence in the limit of large Pe
whenR is in the ‘‘inertial’’ interval of scales. This range isl,
h!R!L, L, whereh is the dissipative scale of the scal
field,

h5LS k0

D D 1/e

. ~2.12!

~2! In addition to structure functions we are also inte
ested in the simultaneousnth-order correlation functions o
the temperature field, which is time independent in station
statistics,

Fn~$rm%![^T~r1 ,t !T~r2 ,t !,...,T~rn ,t !&, ~2.13!

where we used the shorthand notation$rm% for the whole set
of arguments of nth-order correlation function
Fn ,r1 ,r2 ,...,rn .

~3! Finally, we are interested in correlation functions
the gradient field“T. There can be a number of these, a
we denote

Hn
$am%

~$rm%![K )
i 51

n

@¹a iT~r i ,t !#L , ~2.14!
he

ar

ns
f

he
us

ry

where $am% is a set of evenn vector indices $am%
5a1 ,a2 ,...,an . We introduce also one-point correlation
which in the space homogeneous case are independent o
space coordinates:

Hn
$am%[Hn

a1a2 ...an~$rm5r%!. ~2.15!

The tensorHn
$am%($rm%) can be contracted in various way

For example, binary contractionsa15a2 , a35a4 , etc. with
r15r2 , r35r4 , etc. produce the correlation functions of th
dissipation fieldu“Tu2.

When the ensemble is not isotropic we need to take i
account the angular dependence ofR, and the scaling behav
ior consists of multiple contributions arising from anisotrop
effects. The formalism to describe this is set up in Appen
A and in the forthcoming sections.

The correlation functionsFn satisfy the equation@1#

F2k0(
i 51

n

¹ i
21

1

2 (
i , j 51

n

kT
ab~r i2r j !¹ i

a¹ j
bGFn~$rm%!

5
1

2 (
$ iÞ j %51

n

F~r i2r j !Fn22~$rm%mÞ i , j !, ~2.16!

where $rm%mÞ i , j is the set off allrm with m from 1 to n,
except ofm5 i and m5 j . SubstitutingkT

ab(r ) from Eqs.
~2.6!, ~2.7! one gets

F2k(
i 51

n

¹ i
21 (

$ iÞ j %51

n

Wab~r i2r j !¹ i
a¹ j

bGFn~$rm%!

5
1

2 (
$ iÞ j %51

n

F~r i2r j !Fn22~$rm%mÞ i , j !, ~2.17!

where

k5k01D@Le2le#. ~2.18!

Here we used that in the space-homogeneous case( i 51
n

“ i

50 and therefore

U(
i 51

n

“ iU2

5(
i 51

n

¹ i
21 (

$ iÞ j %51

n

¹ i
a¹ j

b50.

Consider thek-Fourier transform ofFn , which is defined as

~2p!ddS (
s51

n

ksDFn~$km%!

5E F )
m51

n

drm exp~ ikm•rm!GFn~$rm%!.

~2.19!

Here thed function applies to a homogeneous ensem
in which Fn($rm%) depends only on differences of coord
nates. ForFn($km%) Eq. ~2.17! yields:
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kFn~$km%!(
i

ki
21

eD

Vd EL21

l21 ddp

pd1e Pab~p!

3 (
$ iÞ j %51

n

ki
akj

bFn~k i1p,k j2p,$km%mÞ i , j !

5F̃n~$km%!, ~2.20!

F̃n~$km%![
~2p!d

2 (
$ iÞ j %51

n

F~k i !d~k i1k j !

3Fn22~$km%mÞ i , j !, for n.2, ~2.21!

F̃~k!5E dR exp~ ik•R!F~R!. ~2.22!

Here F̃(k) is the Fourier transform ofF(R) and F̃2(k)
5F(k). Equation~2.20! may be rewritten as

Fn~$km%!52
eD

kVd
E

L21

l21 ddp

pd1e Pab~p!
($ iÞ j %51

n ki
akj

b

(s51
n ks

2

3Fn~k i1p,k j2p,$km%mÞ i , j !1
F̃n~$km%!

k(s51
n ks

2 .

~2.23!

This equation will serve as the basis for future analysis
Sec. III.

III. SCALING OF THE TEMPERATURE GRADIENT
FIELDS

A. Basic equations ink representation

It appears that Eq.~2.23! is as difficult to solve as Eq
~2.16!. In fact, very important information about scaling b
havior may be extracted from Eq.~2.23! for small e @8#. In
order to develop our method we will analyze first the sim
taneous,n-point correlation functions of the gradient field
Hn

$am%($rm%) andHn
$am% of Eqs.~2.14!, ~2.15!: These objects

are expressed in terms ofFn($km%) as follows:

Hn
$am%

~$rm%!5~2p!~12n!dE )
i 51

n

@ddkik
a i exp~ ik i•r i !#

3Fn~$km%!dS (
s51

n

ksD , ~3.1!

Hn
$am%

5~2p!~12n!dE )
i 51

n

@ddkik
a i#Fn~$km%!dS (

s51

n

ksD .

~3.2!

From this and Eq.~2.23! one gets
n

-

Hn
$am%

52
eD

kVd
E )s51

n ks
asddks

~2p!~n21!d dS (
s51

n

ksD
3E

L21

l21 ddp

pd1e

Pab~p!($ iÞ j %51
n ki

akj
b

(s51
n ks

2

3Fn~k i1p,k j2p,$km%mÞ i , j !1Cn
$am% ,

Cn
$am%[E )s51

n ks
asddks

~2p!~n21!d

F̃n~$km%!

k(s51
n ks

2 dS (
s51

n

ksD . ~3.3!

Shifting the dummy variablesk i2p→k i andk j1p→k j we
have another representation of this equation:

Hn
$am%

52
eD

kVd
E )s51

n ddks

~2p!~n21!d dS (
s51

n

ksD (
$ iÞ j %51

n E
L21

l21

3
ddp

pd1e

~ki
a i2pa i !~kj

a j1pa j !Pab~p!ki
akj

b

2p212p•~k j2k i !1(s51
n ks

2

3 )
s51,sÞ i , j

n

ks
asFn~$km%!1Cn

$am% . ~3.4!

In order to analyze this equation further we choose to n
dimensionalize all the wave vectors byL. We write k̃s
5Lks , p̃5Lp, etc., and for simplicity drop the tilde sign
at the end. We simplify the appearance of the equation
ther by introducing the definition of the dimensionless fun
tion

Ab i ,b j

a ia j ~$km
2 %sÞ i , jk i ,k j ,p!

52E dp̂~ki
a i2pa i !~kj

a j1pa j !Pb ib j~ p̂!

Vd2p212p•~k j2k i !1(s51
n ks

2 ,

~3.5!

wheredp̂ stands for integrating over all the angles of the u
vector p̂[p/p. The resulting equation is

Hn
$am%

5gE )s51
n ddks

~2p!~n21!d dS (
s51

n

ksD (
$ iÞ j %51

n E
1

L/l

3
edp

p11e Ab ib j

a ia j~$km
2 %sÞ i , jk i ,k j ,p!kb ikb j

3 )
s51,sÞ i , j

n

ks
asFn~$km%!1Cn

$am% , ~3.6!

where the dimensionless factorg is

g[
DLe

k01D~Le2le!
. ~3.7!

In fact, we should recognize that the natural expansion
rameter is actually notg, but g̃, where

g̃[gE
1

L/l edp

p11e . ~3.8!
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Evaluating the integral we find

g̃5
D@Le2le#

k01D~Le2le!
. ~3.9!

We will see below thatg̃ can take on very different values i
different limiting cases. In particular it can be ofO(e) or of
O(1) depending on the order of limits. The relevant limit f
the physics at hand will be discussed below. At this point
perform a calculation ofHn

$am% to first order ing̃ in all the
sectors of the symmetry group.

B. Theory to first order in g̃

The theory forFn and Hn can be formulated iteratively
resulting in the following series:

Fn~$rm%!5 (
q50

`

Fn,q~$rm%!, Hn
$am%

5 (
q50

`

Hn,q
$am% .

~3.10!

HereFn,q is the result of theq step of the iteration procedur
of Eq. ~2.23!, Fn,q}g̃q. There are two contributions for eac
term of orderg̃q. One arises from substitutingFn,q21 into
the integral on the right-hand side~RHS! of ~2.23!, and the
second arises fromFn22,q , which appears inF̃n according
to ~2.21!. Correspondingly, alsoHn,q has two contributions.
One is obtained from Eq.~3.6! when we substituteFn,q21 in
the integral on the RHS, and the second when we subst
Fn22,q in the term denoted asCn .

In this section we compute explicitlyHn,1 . Analyzing the
relative importance of these two contributions toHn,1 we
found that the second contribution is negligible compared
the first whenL!L. In other words, we can disregard th
contribution toHn,1 that arises fromFn22,q . This means that
for the sake of our iteration procedure we can replaceF̂n in
~2.23! by the quantityF̃n,0 , which is ofO(g̃0). This means
that instead of Eq.~2.23! we iterate

Fn~$km%!52
eD

kVd
E

L21

l21 ddp

pd1e Pab~p!
($ iÞ j %51

n ki
akj

b

(s51
n ks

2

3Fn~k i1p,k j2p,$km%mÞ i , j !1Fn,0~$km%!,

~3.11!

Fn,0~$km%!5
F̃n,0~$km%!

k(s51
n ks

2 ,

F̃n,0~$km%![
~2p!d

2 (
$ iÞ j %51

n

F~k i !d~k i1k j !

3Fn22,0~$km%mÞ i , j !. ~3.12!

Thus we are interested in calculating
e

te

o

Hn,1
$am%

5g̃E )s51
n ddks

~2p!~n21!d dS (
s51

n

ksD (
$ iÞ j %51

n E
1

L/l

3
edp

p11e Ab ib j

a ia j~$km
2 %sÞ i , jk i ,k j ,p!kb ikb j

3 )
s51,sÞ i , j

n

ks
asFn,0~$km%!. ~3.13!

Recall that the functionF(k) is constant forkL!1 and it
vanishes forkL@1. Therefore the leading contribution to th
integrals ~3.13! over k i comes from the regionkiL<1. In
integral~3.13! p.1/L and in all our approaches we consid
L@L. Therefore in~3.13! p@kj and this equation may be
simplified up to:

Hn,1
$am%

5g̃E )s51
n ddks

~2p!~n21!d d S (
s51

n

ksD (
$ iÞ j %51

n E
1

L/l edp

p11e

3Ab ib j

a ia jkb ikb j )
s51,sÞ i , j

n

ks
asFn,0~$km%!, ~3.14!

where now

Ab ib j

a ia j[
1

2Vd
E dp̂p̂a i p̂a j Pb ib j

~ p̂!, ~3.15!

is the constant tensor that obtains from the tensor func
~3.5! when all ks!p. Performing the all the wave-vecto
integrals we observe that the explicite is canceled by the
integral overp. Accordingly

Hn,1
$am%

5g̃ (
$ iÞ j %51

n

Ab ib j

a ia jHn,0
b ib j $am%mÞ i , j . ~3.16!

An actual integration in~3.15! yields

Ab ib j

a ia j5
da ia j

~d11!2da ib i
da jb j

2da ib j
da jb i

2~d12!~d21!
. ~3.17!

C. Analysis in all the anisotropic sectors

We note that Eqs.~2.17! contain only isotropic operators
On the other handF(r i2r j ) can be anisotropic, dependin
on the direction of the vectorr i2r j . Since the equations ar
linear, we can expand all the objects in terms of the irred
ible representations of the SO(d) group of all rotations, and
be guaranteed that the solutions foliate in the sense that
ferent irreducible representations cannot be mixed. This c
siderations are valid for all the equations in this theory,
cluding Eq. ~3.16!. To know which irreducible
representations we need to use in every case one has to
sult Appendix A. After doing so one notes that for any ord
q, the tensorsHn,q

$am% are constant tensors, fully symmetric
all their indices. Using the exposition of Appendix A w
know that the projections on the irreducible representati
of the SO(d) symmetry group must be of the form

Hn,q,l
$am%

5lq
~ l !Bl ,s,n

$am% . ~3.18!



tio

t
th

t
s

r

n
-

at

ling

e
de

ia-
su-
ify
. In
ere

tion

a

is
is
of

-

-
d.

PRE 62 4909ANOMALOUS SCALING IN THE ANISOTROPIC . . .
Our first order calculation is aimed at finding the ra
l1

( l )/l0
( l ) . Substituting~3.17!, ~3.18! in ~3.16! we find

Hn,1,l
$am%

5
g̃

2~d12!~d21! F ~d11!(
iÞ j

da ia jdb ib j
,l0

~ l !

3Bl ,s,n
b ib j $am%mÞ i , j

2(
iÞ j

@db i

a idb j

b i 1db j

a i db i

a j #

3l0
~ l !Bl ,s,n

b ib j $am%G
5

g̃

~d12!~d21! F ~d11!zn,l

2
2n~n21!Gl0

~ l !Bl ,s,n
$am% .

Defining nowAn
( l ) via the relation

Hn,1
~ l ! 5g̃An

~ l !Hn,0
~ l ! , ~3.19!

we conclude that

An
~ l !5

2n~d1n!

d12
2

~d11!l ~ l 1d22!

2~d21!~d12!
. ~3.20!

D. Interpretation of the result

To interpret the result~3.19!–~3.20! we should observe
that the nature of the theory that we develop depends on
order of the limits that we take. We should recognize that
quantity Hn

$am% does not exist without an inner~ultraviolet!
cutoff. We are thus interested in limiting values ofg̃ subject
to the condition thath is finite. Thus one order of limits tha
makes sense isl→0 first ~corresponding to the Reynold
number going to infinity first!, and thene going to zero sec-
ond, but keepingh fixed @for example by controllingk0 in
Eq. ~2.12!#. Another order of limits ise→0 first ~still keep-
ing h fixed, but very small! with l being fixed and larger
thanh.

If we havel→0 first, and then whene→0 second we
find that the expansion parameter is close to unity:

g̃'12S h

L D e

, for e lnS h

L D!1. ~3.21!

Thus we cannot stop at~3.19!, and we are forced to conside
higher order terms in the expansion ing̃ and appropriate
resummations. This is done in Sec. III F. On the other ha
if e→0 first, we find an apparently ‘‘small’’ expansion pa
rameter that is proportional toe:

g̃'e lnS L

l D , for e lnS h

L D@1. ~3.22!

E. Exponentiating using renormalization group equations

Using Eq.~3.22! in Eq. ~3.19! we get

Hn
~ l !5F11eAn

~ l ! lnS L

l D1O~e2!GHn,0
~ l ! . ~3.23!
he
e

d,

If we expect thatHn
( l ) is a scale invariant function ofL/l we

can interpret Eq.~3.23! as the beginning of an expansion th
can be resummed into a power law

Hn
~ l !5S L

l D eAn
~ l !

Hn,0
~ l ! . ~3.24!

Of course, this is hardly justified just by examining theO(e)
term, since one can have more than one branch of sca
exponents proportional toe. If we havem branches only the
analysis up toO(em) can reveal this. We return to this issu
in the next subsection. An additional issue is the magnitu
of l that can be arbitrarily small, making any reexponent
tion even more dubious. To overcome this problem one u
ally invokes the renormalization group equations to just
the exponentiation. We shortly present this method next
doing so we want to argue that for the case in question th
is nothing more in this approach than direct reexponentia
as long as higher order terms ine are not included.

Within the renormalization group method@8# one consid-
ers Eq.~3.23! as the ‘‘bare’’ value ofHn

( l ) , Hn,B
( l ) . One then

seeks a multiplicative renormalization group by defining
renormalized function

Hn,R
~ l ! ~m,L,...!5ZH~m,L,l!Hn,B

~ l ! ~L,l!. ~3.25!

Herem is a ‘‘running length,’’ and the onlym dependence of
the RHS is through theZH function. DefiningZH so that it
eliminates the dependence of the left-hand side~LHS! on l
and setting the initial conditionHn,R(L,L,...)5Hn,0

( l ) we get

ZH~m,l!511eAn
~ l ! ln~l/m!. ~3.26!

From Eq.~3.25! we get

d ln@Hn,R
~ l ! ~m,L,...!#

d ln m
5gH , ~3.27!

where

gH52eAn
~ l !1O~e2!. ~3.28!

Solving the differential equation~3.27! we get

Hn,R
~ l ! ~m,L,...!5S L

m D eAn
~ l !

Hn,0 . ~3.29!

Exponentiating~3.26! and solving Eq.~3.25! in favor of Hn,B
( l )

we recover Eq.~3.24!. Note that the inner scale in this case
l, sincel.h. This fact casts an additional doubt on th
limit of the theory, since it misses altogether the existence
the Betchelor regime@9# betweenl and h. For all these
reasons we tend to disqualify~3.24! despite the relative sim
plicity of its derivation. We turn next to the other limiting
procedure.

F. Theory for l\0 first

Considering the limitl→0 first, Eq.~3.19! is still valid,
but now g̃ is of order unity, and we cannot justify reexpo
nentiation. The small parametere seems to have disappeare
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This forces us to consider all the higher order terms ing̃ to
understand how to resum them. We will see that at the ene
reappears.

The resummation of theg̃ dependence is aided signifi
cantly by some graphic representations of the relevant e
tions and their perturbative solutions. In Fig. 1 we repres
graphically the definition ~3.2! of Hn

$am% in terms of
Fn($km%). This helps us to introduce the basic diagramma
notations.

A solid long rectangle withnam wavy lines stands for
Hn

$am% , while the elongated solid ellipse representsFn . The
ks wave vectors are denoted by arrows, and the dots re
sent multiplications. The vertical line connecting all the a
row heads stands for the integration with ad function over
the sum of all thek vectors. Figure 2 is a graphic notation
Eq. ~3.6!. The little ellipse with a vertical arrow designate
by p stands for the tensor functionAb ib j

a ia j($ks%sÞ i , jk i ,k j ,p).

This ellipse is involved in the integration over the vectorp in
the loop to the left of the ellipse with a weight consisting
the sum of squares of thek vectors.

The thin elongated ellipse in the second term on the R
stands for the zeroth order termFn,0 , cf., Eq. ~3.12!. The
actual values of the wave vectors are indicated in this d
gram. In later diagrams, Fig. 3, we drop this obvious no
tion. In Fig. 3 we display the perturbative solution, whic
results from the iteration procedure in Eq.~3.11!, the result
of which is substituted in Eq.~3.3!.

The first diagram on the RHS isHn,0
( l ) , whereas the secon

is the first order termHn,1
( l ) , Eq. ~3.19!. The last diagram

shown inHn,2
( l ) . One should note that when theAb ib j

a ia j ellipse

FIG. 2. The graphic representation of Eq.~3.8!.

FIG. 1. The graphic representation of Eq.~3.3!.
a-
t

c

e-
-

S

-
-

appears once we have a sum over all pairsi,j indices withi
Þ j . When it appears twice there is a double sum, with
spect to the pairsiÞ j andlÞm. In analyzing such diagram
one needs to identify three distinct possibilities. These
denoted as case~a!, i 5 l , j 5m, case~b! i 5 l but j Þm, and
case~c! where all the indices are different. There are tw
integrals overp1 andp2 in the loops to the left of the corre
sponding ellipse. We refer to the functionsA of Eq. ~3.5!
that appear in these integrals asA1 and A2 , respectively.
Analyzing the integrals it is useful to separate the discuss
to region I, in whichp1.p2 , and region II, in whichp2
.p1 . In region I we can neglect the contribution ofp2 and
all ks with respect top1 . Accordingly we have two indepen
dent integrals and sums, and the result is therefore

Hn,2
~ l ! 5

1

2
@ g̃An

~ l !#2Hn,0
~ l ! ~region I!, ~3.30!

where the factor 1/2 stems from the fact that the volume
region I is a half of the whole volume of (p1 ,p2) space. In
region II we should distinguish between the cases~a!, ~b!,
and ~c!, for which the evaluation ofA2 will be different. In
case~c! Eq. ~3.5! shows thatA2 is of the order ofp2

2/p1
2,

which is small. In case~b! A2 is of the order ofp2 /p1 ,
which is still small. Only case~a!, in which the loops appea
as two rungs on the same ladder, we haveA2 of the order of
unity. The actual calculation of this integral is presented
Appendix B, with the final result

Hn,2
~ l ! 5

1

2
g̃2An

~ l !Hn,0
~ l ! @region II, case~a!#. ~3.31!

Together the second order result forHn,2
( l ) is

Hn,2
~ l ! 5

1

2
g̃2@An

~ l !1~An
~ l !!2#Hn,0

~ l ! . ~3.32!

Our aim is to find the fully resummed form, correct to a
order in g̃ andAn

( l ) , of Hn
( l ) . We can express it in the form

FIG. 3. The graphic representation of the iteration scheme
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Hn
~ l ![K~ g̃,An

~ l !!Hn,0
~ l ! , ~3.33!

where the functionK(g̃,An
( l )) is represented as the doub

infinite sum

K~ g̃,A!511 (
m51

`

Am(
s5m

`

Dm,sg̃
s. ~3.34!

Up to now we have information aboutD1,151 and D1,2
5D2,251/2.

In Appendix C we derive the following recurrent relatio
for the higher order terms

D1,s5
1

s
, Dm11,s5

1

s (
q5m

s21

Dq,m . ~3.35!

Using ~3.35! in Eq. ~3.34! we find the contribution propor
tional to A:

K1~ g̃,A!5A(
s51

`
g̃s

s
52A ln~12g̃!. ~3.36!

Considering all the terms quadratic inA, and using the re-
current relations to determineD2,s we find

K2~ g̃,A!5A2(
s52

`
g̃s

s (
q51

s21
1

q
. ~3.37!

This double sum is computed in Appendix C with the res

K2~ g̃,A!5
1

2
@2A ln~12g̃!#2. ~3.38!

The general result can be derived using similar techniq
with the result

Km~ g̃,A!5
1

m!
@2A ln~12g̃!#m. ~3.39!

Accordingly we conclude with the series forK(g̃,A):

K~ g̃,A!5 (
m50

`
@2A ln~12g̃!#m

m!
5exp@2A ln~12g̃!#.

~3.40!

Using now Eq.~3.21! one finds

K~ g̃,A!5S L

h D eA

. ~3.41!

Finally, using Eq.~3.33! we have the final result

Hn
~ l !5S L

h D eAn
~ l !

Hn,0
~ l ! . ~3.42!

We are pleased to find that the inner scale is nowh, in
agreement with our expectation. The exponentiation w
achieved naturally in the present case.

In assessing this result, we need to return to a delic
point in the derivation of Eq.~3.42!. The procedure involved
summing all the terms of the order of unity~powers of g̃
t

s

s

te

'1!, while neglecting terms ofO(e). However, the sums
~3.38!–~3.39! result in expressions containing (g̃21)}e. In
other words, we end up with terms that appear of the sa
order as those neglected during the procedure. In orde
justify the results~3.42! we must go back and analyze co
tributions ofO(e). These appear, for example, in contrib
tions in which the ‘‘rungs’’ appear on adjacent ladders, li
case~b! in region II. The two ‘‘simple’’ rungs appearing in
two adjacent ladders can be now considered as a single c
pounded rung. We focus now on the infinite set of diagra
in which this compounded rung repeats many times. T
sum of such diagrams will again generate results contain
(g̃21), and in the end will be responsible for terms
O(e2) in the scaling exponent.

The reason for this phenomenon is the structure of
iterative solution. Sums of terms of orderg̃ have cancella-
tions, leading eventually to a result ofO(e). The sum of
terms ofO(e) have a very similar structure, just we a red
fined ‘‘rung.’’ Therefore they automatically generate anoth
factor of e by resummation. This phenomenon repeats
higher orders, again by redefining what do mean by
‘‘rung.’’

Thus Eq.~3.42! can be considered as the final result f
the scaling of the fused correlation function of gradient fie
with the exponent correct toO(e). In the next section we
turn to the calculation of the scaling exponent of the unfus
correlation function of the scalar field itself. We will sho
that the exponents computed in both methods agree when
same objects are evaluated. This agreement is connect
the final section with the existence of fusion rules that co
trol the asymptotic properties of unfused correlation fun
tions when some coordinates are fused together.

IV. ZERO MODES IN THE ANISOTROPIC SECTORS

A. Calculation of the correlation functions

In this section we consider the zero modes of Eq.~2.16!.
In other words we seek solutionsZn($rm%) that in the inertial
interval solve the homogeneous equation

(
iÞ j 51

n

kT
ab~r i2r j !¹ i

a¹ j
bZn~$rm%!50. ~4.1!

We allow anisotropy on the large scales. Since all the ope
tors here are isotropic and the equation is linear, the solu
space foliates into sectors$l,s% corresponding to the irreduc
ible representations of the SO(d) symmetry group. Accord-
ingly we write the wanted solution in the form

Zn~$rm%!5(
l ,s

Zn,l ,s~$rm%!, ~4.2!

whereZn,l ,s is composed of functions that transform accor
ing to the~l,s! irreducible representations of SO(d). Each of
these components is now expanded ine. In other words, we
write, in the notation of Ref.@2#,

Zn,l ,s5En,l ,s1eGn,l ,s1O~e2!. ~4.3!

For e50, Eq. ~4.1! simplifies to
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(
i 51

n

¹ i
2En,l ,s~$rm%!50, ~4.4!

for any value ofl, s. Next we expand the operator in E
~4.1! in e and collect the terms ofO(e):

(
i 51

n

¹ i
2Gn,l ,s~$rm%!5VnEn,l ,s~$rm%!, ~4.5!

where eVn is the first order term in the expansion of th
operator in~4.1!,

Vn[ (
j Þk51

n Fdab ln~r jk!2
r jk

a r jk
b

~d21!r jk
2 G¹ j

a¹k
b , ~4.6!

wherer jk[r j2r k .
In solving Eq.~4.4! we are led by the following consid

erations: we want scale invariant solutions, which are pow
of r jk . We want analytic solutions, and thus we are limit
to polynomials. Finally we want solutions that involve all th
n coordinates for the functionEn,l ,s ; solutions with fewer
coordinates do not contribute to the structure functions~2.9!.
To see this, note that the unfused structure function i
linear combination of correlation functions. This linear com
bination can be represented in terms of the difference op
tor d j (r ,r 8) defined by

d j~r ,r 8!F~$rm%![F~$rm%!ur j 5r2F~$rm%!ur j 5r8 . ~4.7!

Then,

Sn~r1 ,r18 ,...,rnrn8!5)
j

d j~r j ,r j8!F~$rm%!. ~4.8!

Accordingly, if F($rm%) does not depend onr k , then
dk(r k ,r k8)F($rm%)50 identically. Since the difference opera
tors commute, we can have no contribution to the struct
functions from parts ofF that depend on less thann coordi-
nates. Finally we want the minimal polynomial becau
higher order ones are negligible in the limitr jk!L. Accord-
ingly, En,l ,s with l<n is a polynomial of ordern. Consulting
Appendix A for the irreducible representations of the SO(d)
symmetry group, we can write the most general form
En,l ,s , up to an arbitrary factor, as

En,l ,s5r 1
a1...r n

anBn,l ,s
a1 ,...,an1@¯#, ~4.9!

where @¯# stands for all the terms that contain less thann
coordinates; these do not appear in the structure functi
but maintain the translational invariance of our quantiti
The appearance of the tensorBn,l ,s

a1 ...an of Appendix A is jus-
tified by the fact thatEn,l ,s must be symmetric to permuta
tions of any pair of coordinates on the one hand, and it ha
belong to thel, s sector on the other hand. This requires t
appearance of the fully symmetric tensor~A5!.

In light of Eqs. ~4.5!–~4.6! we seek solution for
Gn

( l )($rm%) of the form
rs

a
-
a-

re

e

f

s,
.

to

Gn,ls~$rm%!5(
j Þk

Hl ,s
jk ~$rm%!ln~r jk!1Hl ,s~$rm%!,

~4.10!

whereHl ,s
jk ($rm%) andHl ,s($rm%) are polynomials of degree

n. The latter is fully symmetric in the coordinates. Th
former is symmetric inr j ,r k and separately in all the othe
$r m%mÞ i , j .

Substituting Eq.~4.10! into Eq.~4.5! and collecting terms
of the same type yields three equations:

(
i

¹ i
2Hl ,s

jk 5¹ j•¹kE2n,l ,s , ~4.11!

2@d221r jk•~“ j2“k!#Hl ,s
jk 1

r jk
a r jk

b ¹ j
a¹k

b

d21
E2n,l ,s

52r jk
2 Kl ,s

jk , ~4.12!

(
i

¹ i
2Hl ,s5(

j Þk
Kl ,s

jk . ~4.13!

HereKl ,s
jk are polynomials of degreen22, which are sepa-

rately symmetric in thej,k coordinates and in all the othe
coordinates exceptj,k. In Ref. @2# it was proven that forl
50 these equations posses a unique solution. The proof
lows through unchanged for anylÞ0, and we thus proceed
to finding the solution.

By symmetry we can specialize the discussion toj 51,k
52. In light of Eq.~4.12! we see thatHl ,s

12 must have at leas
a quadratic contribution inr 12. This guarantees that~4.10! is
nonsingular in the limitr 12→0. The only part ofHl ,s

12 that
will contribute to structure functions must containr3¯rn at
least once. SinceHl ,s

12 has to be a polynomial of degreen in
the coordinates, it must be of the form

Hl ,s
12 5r 12

a1r 12
a2r 3

a3
¯r n

anCa1a2 ,...,an1@¯#1,2, ~4.14!

where@¯#1,2 contains terms with higher powers ofr 12 and
therefore do not contain some of the other coordina
r 3¯r n . Obviously such terms are unimportant for the stru
ture functions. SinceHl ,s

12 has to be symmetric inr1 , r2 and
r3¯rn separately, and it has to belong to anl, s sector, we
conclude that the constant tensorC must have the same sym
metry and to belong to the same sector. Consulting Appen
A, the most general form ofC is

Ca1a2 ...an5aB2n,l ,s
a1 ,a2 ,...,an1bda1a2B2n22,l ,s

a3 ,a4 ,...,an

1c (
iÞ j .2

da1a ida2a jB2n24,l ,s
a3 ,a4 ,...,an. ~4.15!

Substituting in Eq.~4.12! one finds

~d12!Hl ,s
12 1

r 12
a1r 12

a2r 3
a3...r 2n

an

2d22
B2n,l ,s

a1 ,...,an

1
1

2
r 12

a1r 12
a2da1a2Kl ,s

1,25@¯#1,2. ~4.16!
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Substituting Eq.~4.14! and demanding that coefficients o
the termr 1

a1...r n
an will sum up to zero, we obtain

22~d12!a2
2

2d22
50,

22~d12!c50; ⇒c50. ~4.17!

The coefficientb is not determined from this equation due
possible contributions from the unknown last term. We d
termine the coefficientb from Eq. ~4.11!. After substituting
the forms we find

4da1a2r 3
a3
¯r 2n

an@aB2n,l ,s
a1 ,...,an1bda1a2B2n22,l ,s

a3 ,a4 ,...,an#

5da1a2r a3
¯r anB2n,l ,s

a1 ,...,an1@¯#1,2. ~4.18!

Recalling the identity~A6! we obtain

b5
zn,l

4d
@124a#. ~4.19!

Finally we find thata is n,l independent,

a52
1

2~d12!~d21!
, ~4.20!

whereasb does depend onn andl, and we therefore denote
asbn,l

bn,l5
~d11!

4~d12!~d21!
zn,l . ~4.21!

In the next subsection we compute from these results
scaling exponents in the sectors of the SO(d) symmetry
group with l<n.

B. The scaling exponents of the structure functions

We now wish to show that the solution for the zero mod
of the correlation functionsFn ~i.e., Zn! result in homoge-
neous structure functionsSn . In every sectorl<n, s we
compute the scaling exponents, and show that they are i
pendent ofs. Accordingly the scaling exponents are denot
zn

l , and we compute them to first order ine.
Using ~4.7!, ~4.8!, the structure function is given by

~4.22!

whereD i
a i[r i

a i2 r̄ i
a i, and the functionf is defined as:
-

e

s

e-
d

f a ia j~r i , r̄ i ,r j , r̄ j !

[~r i2r j !
a i~r i2r j !

a j lnur i2r j u1~ r̄ i2 r̄ j !
a i

3~ r̄ i2 r̄ j !
a j lnu r̄ i2 r̄ j u2~r i2 r̄ j !

a i~r i2 r̄ j !
a i

3 lnur i2 r̄ j2~ r̄ i2r j !
a i~ r̄ i2r j !

a j lnu r̄ i2r j u.

~4.23!

The scaling exponent ofSn,l ,s can be found by multiplying
all its coordinates bym. A direct calculation yields:

Using ~A8!, we find that

and therefore, we finally obtain

Sn~mr1 ,m r̄1 ;...!5mn$122e@n~n21!a1bn,l # ln m%

3Sn~r1 , r̄1 ;...!1O~e!2

5mzn
~ l !Sn~r1 , r̄1 ;...!1O~e2!.

The result of the scaling exponent is now evident:

zn
~ l !5n22eF2

n~n21!

2~d12!~d21!
1

~d11!

4~d12!~d21!
zn,l G

1O~e2!

5n2eFn~n1d!

2~d12!
2

~d11!l ~ l 1d22!

2~d12!~d21! G
1O~e2!. ~4.24!

For l 50 this result coincides with@2#. This is the final result
of this calculation. It is noteworthy that this result is in fu
agreement with~3.42! and ~3.20!, even though the scaling
exponents that appear in these results refer to different q
tities. The way to understand this is the fusion rules that
discussed next.
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C. Fusion rules

The fusion rules address the asymptotic properties of
fully unfused structure functions when two or more of t
coordinates are approaching each other, whereas the re
the coordinates remain separated by much larger scale
full discussion of the fusion rules for the Navier-Stokes a
the Kraichnan model can be found in@7,10#. In this section
we wish to derive the fusion rules directly from the ze
modes that were computed toO(e), in all the sectors of the
symmetry group. In other words, we are after the depende
of the structure functionSn(r1 , r̄1 ;...) on itsfirst p pairs of
coordinatesr1 , r̄1 ;...;r p , r̄ p in the case where these poin
are very close to each other compared to their distance f
the othern2p pairs of coordinates. Explicitly, we conside
the case wherer1 , r̄1 ;...;r p , r̄ p!r p11 , r̄ p11 ;...;rn , r̄n . ~We
have used here the property of translational invariance to
the center of mass of the first 2p coordinates at the origin.!
The calculation is presented in Appendix D, with the fin
result @to O(e)#

Sn,l ,s~r1 , r̄1 ;...;rn , r̄n!

5 (
j 5 j max

p

(
s8

cj ,s8Sp, j ,s8~r1 , r̄1 ;...;r pr̄ p!.

~4.25!

In this expression the quantityc j ,s8 is a function of all the
coordinates that remain separated by large distances, an

j max5max$0,p1 l 2n%, l<n. ~4.26!

We have shown that the LHS has a homogeneity expon
zn

( l ) . The RHS is a product of functions with homogene
exponentszp

( j ) and the functionsc j ,s8 . Using the linear in-
dependence of the functionsSp, j ,s8 we conclude thatc j ,s8
must have homogeneity exponentzn

( l )2zp
( j ) . This is pre-

cisely the prediction of the fusion rules, but in each sec
separately. One should stress the intuitive meaning of
fusion rules. The result shows that whenp coordinates ap-
proach each other, the homogeneity exponent correspon
to these coordinates becomes simplyzp

( j ) as if we were con-
sidering ap-order correlation function. The meaning of th
result is thatp field amplitudes measured atp close by coor-
dinates in the presence ofn2p field amplitudes determined
far away behave scalingwise, likep field amplitudes in the
presence of anisotropic boundary conditions. In closing,
note that the tensor functionscj ,s8 do not necessarily belon
to the j, s8 sector of SO(d).

V. SUMMARY AND DISCUSSION

One motivation in this paper was to understand the s
ing properties of the statistical objects under anisotro
boundary conditions. The scaling exponents were found
all l<n, cf., Eq. ~1.1!. We found a discrete and strictly in
creasing spectrum of exponents as a function ofl. This
means that for higherl the anisotropic contributions to th
statistical objects decay faster upon decreasing scales
other words, the statistical objects tend towards locally i
tropic statistics upon decreasing the scale. The rate of iso
pization is determined by the difference between
e

t of
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nt
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e
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c
r
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-
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l-dependent scaling exponents, and is of course a power
The result shows that thel-dependent part isn independent.
This means that the rate of isotropization of all the mome
of the distribution function of field differences across a giv
scale is the same. This is a demonstration of the fact that
distribution function itself tends towards a locally isotrop
distribution function at the same rate. We note in passing
to first order ine the l-dependent part is also identical forz2 ,
a quantity whose isotropic value is not anomalous. For al
.1 alsoz2

( l ) is anomalous, and in agreement with then51
value of Eq.~1.1!. Significantly, forz2 we have a nonpertur
bative result that was derived in@7#, namely,

z2
~ l !5

1

2 F22d2e

1A~22d2e!21
4~d1e21!l ~d1 l 22!

d21 G ,
~5.1!

valid for all values ofe in the interval~0,2! and for all l
>2. This exact result agrees after expanding toO(e) with
~4.24! for n51 andl 52.

Our second motivation was to expose the corresponde
between the scaling exponents of the zero modes in the
ertial interval and the corresponding scaling exponents of
gradient fields. The latter do not depend on any iner

scales, and the exponent appears in the combination (L/j)zn
l
,

wherej is the appropriate ultraviolet inner cutoff, eitherl or
h, depending on the limiting process. We found exact agr
ment with the exponents of the zero modes in all the sec
of the symmetry group and for all values ofn. The reason
behind this agreement is the linearity of the fundamen
equation of the passive scalar~2.1!. This translates to the fac
that the viscous cutoffh, Eq. ~2.12!, is n and l independent,
and also does not depend on the inertial separations in
unfused correlation functions. This point has been discus
in detail in @7,11#. In the case of Navier-Stokes statistics w
expect this ‘‘trivial’’ correspondence to fail, but neverthele
the ‘‘bridge relations’’ that connect these two families
exponents has been presented in@10# for the isotropic sector.
Finally we note that in the present case we have displa
the fusion rules in all thel sectors, using theO(e) explicit
form of the zero modes. We expect the fusion rules to hav
nonperturbative validity for any value ofe. It would be in-
teresting to explore similar results for the Navier-Stok
case.
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APPENDIX A: ANISOTROPY IN d DIMENSIONS

To deal with anisotropy ind dimensions we need classif
the irreducible representations of the group of
d-dimensional rotations, SO(d) @12#, and then to find a
proper basis for these representations. The main linear s
that we work in~the carrier space! is the space of constan
tensors withn indices. This space possesses a natural re
sentation of SO(d), given by the well known transformatio
of tensors underd-dimensional rotation.

The traditional method to find a basis for the irreducib
representations of SO(d) in this space is using the Youn
tableaux machinery on the subspace of traceless tensors@12#.
It turns out that in the context of the present paper, we do
need the explicit structure of these tensors. Instead, all
matters are some relations among them. A convenient wa
derive these relations is to construct the basis tensors f
functions on the unitd-dimensional sphere that belong to
specific irreducible representation. Here also, the exp
form of these functions in unimportant. All that matters f
our calculations is the action of the Laplacian operator
these functions.

Let us therefore consider first the spaceSd of functions
over the unitd-dimensional sphere. The representation
SO(d) over this space is naturally defined by

ORC~ û![C~R21û!, ~A1!

where C(û) is any function on thed-dimensional sphere
andR is a d-dimensional rotation.

Sd can be spanned by polynomials of the unit vectorû.
Obviously~A1! does not change the degree of a polynom
and therefore each irreducible representation in this sp
can be characterized by an integerl 50, 1, 2,..., specifying
the degree of the polynomials that span this representa
At this point, we cannot rule out the possibility that som
other integers are needed to fully specify all irreducible r
resentations inSd and therefore we will need below anoth
set of indices to complete the specification.

We can now choose a basis of polynomials$Yl ,s(û)% that
span all the irreducible representations of SO(d) over Sd .
The indexs counts all integers other thanl needed to fully
specify all irreducible representations, and in addition, it
bels the different functions within each irreducible repres
tation.

Let us demonstrate this construction in two and three
mensions. In two dimensionss is not needed since all th
irreducible representations are one dimensional and
spanned byYl(û)5eil f with f being the angle betweenû
and the the vectorê1[(1,0). Any rotation of the coordinate
in an anglef0 results in a multiplicative factoreif0. It is
clear thatYl(û) is a polynomial inû sinceYl(û)5@ û• p̂# l ,
where p̂[(1,i ). In three dimensionss5m, wherem takes
on 2l 11 values m52 l ,2 l 11,...,l . Here Yl ,m

}eimfPl
m(cosu), wheref andu are the usual spherical co

ordinates, andPl
m is the associated Legendre polynomial

degreel 2m. Obviously we again have a polynomial inû of
degreel.

We now wish to calculate the action of the Laplaci
operator with respect tou on the Yl ,s(û). We prove the
following identity:
l

ce

e-

ot
at
to
m

it

n

f

l,
ce

n.

-

-
-

i-

re

u2]a]aYl ,s~ û!52 l ~ l 1d22!Yl ,s~ û!. ~A2!

One can easily check that ford53, ~A2! gives the factor
l ( l 11), well known from the theory of angular momentu
in quantum mechanics. To prove this identity for anyd, note
that

uuu22 l]2uuu lYl ,s~ û!50. ~A3!

This follows from the fact that the Laplacian is an isotrop
operator, and therefore is diagonal in theYl ,s . The same is
true for the operatoruuu22 l]2uuu l . But this operator results in
a polynomial inû of degreel 22, which is spanned byYl 8,s8
such thatl 8< l 22. Therefore the RHS of~A3! must vanish.
Accordingly we write

]2uul uYl ,s~ û!12]auul u]aYl ,s1uul u]2Yl ,s~ û!50.
~A4!

The second term vanishes since it contains a radial deriva
ua]a operating onYl ,s(û), which depends onû only. The
first and third terms, upon elementary manipulations, lead
~A2!.

Having theYl ,s(û) we can now construct the irreducibl
representations in the space of constant tensors. The me
is based on acting on theYl ,s(û) with the isotropic operators
ua, ]a, anddab. Due to the isotropy of the above operato
the behavior of the resulting expressions under rotation
similar to the behavior of the scalar function we started wi
For example, the tensor fieldsdabYl ,s(û), ]a]bYl ,s(û)
transform under rotations according to the (l ,s) sector of
SO(d).

Next, we wish to find the basis for the irreducible repr
sentations of the space of constant and fully symmetric t
sors withn indices. We form the basis

Bl ,s,n
a1 ,...,an[]a1

¯]anunYl ,s~ û!, l<n. ~A5!

Note that whenl andn are even~as is the case invariably in
this paper!, Bl ,s,n

a1 ,...,an no longer depends onû, and is indeed
fully symmetric by construction. Simple arguments can a
prove that this basis is indeed complete, and spans all f
symmetric tensors withn indices. Other examples of thi
procedure for the other spaces are presented directly in
text.

Finally let us introduce two identities involving theBn,l ,s
that are used over and over through the paper. The first on

da1a2
Bl ,s,n

a1 ,...,an5zn,lBl ,s,n22
a3 ,...,an, ~A6!

zn,l5@n~n1d22!2 l ~ l 1d22!#. ~A7!

It is straightforward to derive this identity using~A2!. The
second identity is

(
iÞ j

da ia jBl ,s,n22
$am%,mÞ i , j

5Bl ,s,n
a1 ,...,an, l<n22 . ~A8!

This identity is proven by writingun in ~A5! asu2un22, and
operating with the derivative onu2. The term obtained as
u2]a1

¯]anun22Yl ,s(û) vanishes because we haven deriva-
tives on a polynomial of degreen22. It is worthwhile no-
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ticing that these identities connect tensors from two differ
spaces: The space of tensors withn indices and the space o
tensors withn22 indices. Nevertheless, in both spaces,
tensors belong to the same (l ,s) sector of the SO(d) group.
This is due to the isotropy of the contraction withda1a2 in
the first identity, and the contraction withda ia j in the second
identity.

APPENDIX B: PROOF OF EQ. „3.32…

In case a of region II wherep1.p2.ks the analytic ex-
pression forA2 can be simplified to

A2b ib j

a ia j 5
1

2
p̂1

a i p̂1
a jE dp̂2

Vd
pb ib j~ p̂2!. ~B1!

Using the identities

E dp̂5V~d!, Vd[V~d!
d21

d
, ~B2!

E dp̂p̂ap̂b5dabV~d!, ~B3!

we compute

A2b ib j

a ia j 5
1

2
p̂1

a i p̂1
a jdb ib j

. ~B4!

Substituting this form into the double rung ladder diagra
results, after contracting all the indices ofA1 and A2 , in a
form identical to Eq.~3.15! for A in the one rung ladde
diagram. This leads directly to the final equation, Eq.~3.31!.

APPENDIX C: DOUBLE RESUMMATION

1. Calculation of Dm,s

In this Appendix we discuss the calculation of the coe
cientsDm,s in Eq. ~3.34!, and the actual resummation of th
equation.

First, we need to introduce rules to evaluate the rung
the general ladder diagram that appear in the expansion.
rule is actually quite simple: every rung contributes a te
proportional togAn

( l ) if the p vector associated with this run
is the largest among all thep vectors associated with rung
appearing to the right of it. Otherwise the contribution
proportional tog̃. The weight of the contribution is obtaine
as a factorc<1 which reflects the proportional fraction o
the volume of (p1 ,p2 ,...) space in which the associated o
dering of thep vectors is valid. For example, if the rung wit
the largestp vector is in the extreme right, then all the oth
rungs contribute terms proportional tog̃. Thus a diagram
with s rungs ordered in this manner contributes with a wei
C51/s. Therefore

D1,s5
1

s
. ~C1!

The recurrence relation forDm,s with m.1 is derived by
inserting an additional rung that is associated with the larg
p vector in any one of the (s11) possible positions availabl
t

e

-

in
he

t

st

in a diagram withs rungs. After some combinatorial calcu
lations of the weights one finds

Dm11,s5
1

s (
q5m

s21

Dq,m . ~C2!

Together with~C1! this gives

D2,s5
1

s (
q51

s21
1

q
, ~C3!

D3,s5
1

s (
q252

s21
1

q2
(

q151

q221
1

q1
, ~C4!

D4,s5
1

s (
q353

s21
1

q3
(

q252

q321
1

q2
(

q151

q221
1

q1
, etc. ~C5!

The general structure ofDm,s now becomes obvious.

2. Higher order terms in A

Consider the equation~3.37!

K2~g,A!5A2(
s52

`
g̃s

s (
q51

s21
1

q
. ~C6!

Observing that

(
q51

s21
1

q
5

1

2 F (
q51

s21 S 1

s2q
1

1

qD G , ~C7!

and

1

s S 1

q
1

1

s2qD5
1

q~s2q!
, ~C8!

we end up with

K2~ g̃,A!5
1

2
A2 (

q151

`

(
q251

`
g̃q11q2

q1q2
, ~C9!

where we relabeledq→q1 ands2q→q2 and changed cor-
respondingly the limit of summation overq2 . Thus

K2~ g̃,A!5
1

2
A2F (

q51

`
1

q G2

5
1

2
@2A ln~12g!#2.

~C10!

The terms proportional toA3 give

K3~ g̃,A!5A3(
s53

`
g̃n

n (
q252

s21
1

q2
(

q151

q221
1

q1
. ~C11!

We can rearrange the sums by summing overq35n2q1
2q2 instead ofn. Using relationships similar to~C7! and
~C8! we find

K35
1

6
A2 (

q151

`

(
q251

`

(
q351

`
g̃q11q21q3

q1q2q3
. ~C12!
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Obviously this leads to

K3~ g̃,A!5
1

6
A3F (

q51

`
g̃q

q G3

5
1

3!
@2A ln~12g̃!#3.

~C13!

The general structure is now clear, leading to Eq.~3.38!.

APPENDIX D: DERIVATION OF THE FUSION RULES

In this Appendix we derive the fusion rules~4.25!. Con-
sider a fully unfused structure function withn coordinates,
such thatp of them are separated from each other by a ty
cal distancer, whereasn2p coordinates are separated fro
them and from each other by a typical distanceR, and R
@r . We want to compute the asymptotic properties ofSn
and show that to leading order inr /R we find Eq.~4.25!. For
homogeneous ensembles we can shift the origin to the ce
of mass of thep coordinates. In this case we haver j!r i for
every j <p and i .p. Our aim is to separate the dependen
on the small distances from the dependence on the l
distances. We will see that some of the terms inSn lend
themselves naturally to such a separation, and some ca
more work. We start from Eq.~4.22!, and compute to first
order in r /R:

f a ia j~r i , r̄ i ,r j , r̄ j !

[~r i2r j !
a i~r i2r j !

a j lnur i2r j u

1~ r̄ i2 r̄ j !
a i~ r̄ i2 r̄ j !

a j lnu r̄ i2 r̄ j u2~r i2 r̄ j !
a i

3~r i2 r̄ j !
a j lnur i2 r̄ j u2~ r̄ i2r j !

a i~ r̄ i2r j !
a j lnu r̄ i2r j u

5F22r i
a idb

a j ln r i2r i
a i r i

a j
~r i !b

r i
2 12r̄ i

a idb
a j ln r̄ i

1 r̄ i
a i r̄ i

a j
~ r̄ i !b

r̄ i
2 GD j

b[ga ia jb~r i , r̄ i !D j
b , ~D1!

and so, if r j , r̄ j!r i , r̄ i for j 51,...,p, i 5p11,...,n then the
first order ine of Sn will contain three types of terms:
i-

ter

e
ge

for

We note that of these three terms onlyI 2 has a nontrivial
mixing of small and large coordinates, and indeed it is
only term in which the expansion~D1! was employed. Col-
lecting terms we find

where

B̃p
a1,...,ap5Dp11

ap11,...,Dn
anBn,...,s

a1 ...an

5 (
j 5max$0,p1 l 2n%

p

(
s8

cj ,s8Bp, j ,s
a1 ,...,ap,

B̃p22
a3 ...ap5Dp11

ap11,...,Dn
anBn22,l ,s

a3 ,...,an

5 (
j 5max$0,p1 l 2n%

p22

(
s8

dj ,s8Bp22,j ,s
a1 ,...,ap,
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In these expressions we use the factB̃p is a fully symmetric
tensor and therefore can be again expanded in terms o
basis functionsBp, j ,s8 with coefficients that depend on th
large separations. The sums on the right-hand sides run
tween j 5max$0,p1 l 2n% and p because not all the bas
functions can appear whenp1 l 2n.0. This can be checked
by contracting theB̃p with (n2 l 12)/2 d function. This con-
traction vanishes since it contains a factorzl ,l . On the other
hand, the contraction results in a tensor withp1 l 2n22
indices, and therefore all corresponding coefficients ofj <p
1 l 2n22 must vanish. To proceed we establish the follo
ing identity:

zp, j

zn,l
cj ,s85dj ,s8 . ~D2!

The identity is proven by the following calculations:

Dp11
ap11,...,Dn

anBn,l ,s
a1 ,...,an

5]a1
¯]apupu2p@Dp11

ap11,...,Dn
an#]ap11

¯]an
unYl ,s~ û!

5]a1
¯]apup(

j ,s8
cj ,s8Yj ,s8~ û!

Dp11
ap11,...,Dn

anBn22,l ,s
a3 ,...,an

5]a3
¯]apup22u2p12@Dp11,

ap11,...,Dn
an#

3]ap11
¯]an

un22Yl ,s~ û!

5]a3
¯]apup(

j ,s8
dj ,s8Yj ,s8~ û!.

Denote now

f ~ û![u2p@Dp11
ap11,...,Dn

an#]p11¯]nunYl ,s~ û!

5(
j ,s8

cj ,s8Yj ,s8~ û!,
he

e-

-

g~ û![u2p12@Dp11
ap11,...,Dn

an#]p11¯]nun22Yl ,s~ û!

5(
j ,s8

dj ,s8Yj ,s8~ û!.

To obtain~D2!, operate withu2]2 on f (û). On the one hand
we get

u2]2f ~ û!5(
j ,s8

2 j ~ j 1d22!cj ,s8Yj ,s8~ û!

but on the other hand, we have

u2]2f ~ û!5u2]2@u2p@Dp11
ap11,...,Dn

an#]p11¯]nunYl ,s~ û!#

52p~2p1d22! f ~ û!22p2f ~ û!1zn,lg~ û!

52p~p1d22! f ~ û!1zn,lg~ û!.

Equating the two expressions, and projecting over
( j ,s8) sector, we obtain

2 j ~ j 1d22!cj ,s852p~p1d22!cj ,s81zn,ldj ,s8

dj ,s85
@p~p1d22!2 j ~ j 1222!#

zn,l
cj ,s85

zp, j

zn,l
cj ,s8 .

Recalling Eq.~4.21!, bp, j5bn,lzp, j /zn,l and we may write to
leading order inr /R:

Sn~r1 , r̄1 ;...;rnr̄n!

5 (
j 5max$0,p1 l 2n%

p

(
s8

Cj ,s8FD1
a1, . . . ,Dp

apB
p, j ,s8

a1 ,...,ap

1e(
iÞ j

D1
a1, . . . ,Dp

ap

no i , j

f a ia j~r i , r̄ i ,r j , r̄ j !@aB
p,l ,s8

a1 ,...,ap

1bp, jd
a ia jB

p22,l ,s8

a1 ,...ap

no i , j

#G1 (
j 5max$0,p1 l 2n%

p

(
s8

eej ,s8

3D1
a1,...,Dp

apB
p, j ,s8

a1 ,...,ap1O~e2!

5 (
j 5max$0,p1 l 2n%

p

(
s8

~cj ,s81eej ,s8!

3Sp, j ,s8~r1 , r̄1 ;...;r p , r̄ p!1O~e2!.

From this follows Eq.~4.25!.
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