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Anomalous scaling in the anisotropic sectors of the Kraichnan model of passive scalar advection
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Kraichnan’s model of passive scalar advection in which the drivi@gussiah velocity field has fast
temporal decorrelation is studied as a case model for understanding the anomalous scaling behavior in the
anisotropic sectors of turbulent fields. We show here that the solutions of the Kraichnan equation for the
n-order correlation functions foliate into sectors that are classified by the irreducible representations of the
SO() symmetry group. We find a discrete spectrum of universal anomalous exponents, with a different
exponent characterizing the scaling behavior in every sector. Generically the correlation functions and structure
functions appear as sums over all these contributions, with nonuniversal amplitudes that are determined by the
anisotropic boundary conditions. The isotropic sector is always characterized by the smallest exponent, and
therefore for sufficiently small scales local isotropy is always restored. The calculation of the anomalous
exponents is done in two complementary ways. In the first they are obtained from the analysis of the correla-
tion functions of gradient fields. The theory of these functions involves the control of logarithmic divergences
that translate into anomalous scaling with the ratio of the inner and the outer scales appearing in the final result.
In the second method we compute the exponents from the zero modes of the Kraichnan equation for the
correlation functions of the scalar field itself. In this case the renormalization scale is the outer scale. The two
approaches lead to the same scaling exponents for the same statistical objects, illuminating the relative role of
the outer and inner scales as renormalization scales. In addition we derive exact fusion rules, which govern the
small scale asymptotics of the correlation functions in all the sectors of the symmetry group and in all
dimensions.

PACS numbds): 47.27.Gs, 47.27.Jv, 05.40a

[. INTRODUCTION objects like structure functions and correlations functions are
characterized by one scalittgr homogeneityexponent only

The aim of this paper is twofold. On the one hand, we aran the idealized case of full isotropy, or infinite Reynolds
interested in the effects of anisotropy on the universal asnumbers when the scaling regime is of infinite extent. An-
pects of scaling behavior in turbulent systems. To this ainmisotropy results in mixing in various contributions to the sta-
we present below a theory of the anomalous scaling of théistical objects, each of which is characterized by one univer-
Kraichnan model of turbulent advectidi] in anisotropic  sal exponent, but the total is a sum of such contributions that
sectors that are classified by the irreducible representatiorsppears not to “scale” in standard log-log plots. By realiz-
of the SO@) symmetry group. On the other hand, we areing that the correlation functions have natural projections on
interested in clarifying the relationship between ultravioletthe irreducible representations of the SO(3) symmetry group
and infrared anomalies in turbulent systems. Again, it turnave could offer methods of data analysis that allow one to
out that the Kraichnan model is an excellent case model imeasure the universal scaling exponents in each sector sepa-
which this relationship can be exposed with complete clarityrately. In this paper we show that this foliation is an exact
As is well known by now, the Kraichnan model describes theproperty of the statistical objects that arise in the context of
advection of a passive scalar by a velocity field that is ranthe Kraichnan model.
dom, Gaussian, and correlated in time. The correlation The second issue that transcends the particular example of
functions of the field scale in their spatial dependence, anthe Kraichnan model is the identification of the renormaliza-
the main question is what are the scalifgg homogeneity  tion scales that are associated with anomalous exponents. As
exponents of the statistical objects of the scalar field that arbas been already explained before, the renormalization scale
induced by the given value of the scaling exponent of thehat appears in the correlation functions of the passively ad-
advecting velocity field. vected scalar field is the outer scale of turbulebhc®n the

The two issues discussed in this paper have an importanagher hand, the theory of correlations of gradients of the field
that transcends the particular example that we treat in deta@ixpose in the innefor dissipative scale an additional renor-
in this paper. The first is the role of anisotropy in the ob-malization scale. Having below a theory of anomalous scal-
served scaling properties in turbulence. We have shown rang in various sectors of the symmetry group allows us to
cently that in the presence of anisotropic effe@tdich are  explain clearly the relationship between the two renormaliza-
ubiquitous in realistic turbulent systejnsne needs to care- tion scales and the anomalous exponents that are implied by
fully disentangle the various universal scaling contributionstheir existence. Since we expect that Kolmogorov-type theo-
Even at the largest available Reynolds numbers the observetks, which assume that no renormalization scale appears in
scaling behavior is not simple, being composed of severahe theory, are generally invalidated by the appearance of
contributions with different scaling exponents. The statisticaboth the outer and the inner scales as renormalization scales,
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the clarification of the relation between the two is importantll. KRAICHNAN'S MODEL OF TURBULENT ADVECTION

also for other cases of turbulent statistics.

The central quantitative result of this paper is the expres-

sion for the scaling exponef!’, which is associated with
the scaling behavior of the-order correlation functiorjor
structure functiohof the scalar field in théth sector of the

AND THE STATISTICAL OBJECTS

The model of passive scalar advection with rapidly deco-
rrelating velocity field was introduced by Kraichnft] al-
ready in 1968. In recent yeaf2—7] it was shown to be a
fruitful case model for understanding multiscaling in the sta-

symmetry group. In other words, this is the scaling exponentistical description of turbulent fields. The basic dynamical

of the projection of the correlation function on theh irre-
ducible representation of the S@)(symmetry group, witm

equation in this model is for a scalar fieldr,t) advected by
a random velocity fieldi(r,t):

and| taking on even values onlp=0,2,... and =0,2,...,

[0,— koV2+u(r,t)- V]T(r,t)="F(r,t). (2.2

0_ . (nnt+d) (d+DI(+d-2) Lo In this equationf (r,t) is the forcing. In Kraichnan’s model
fn=n—e 2(d+2) 2(d+2)(d—-1) (€. the advecting fieldi(r,t) as well as the forcing field(r,t)
(1.  are taken to be Gaussian, time and space homogeneous, and

S correlated in time:

The result is valid for any evelnr=n, and toO(€) wheree is f(r,H)f(r' t")=®d(r—r")s(t—t"), (2.2
the scaling exponent of the eddy diffusivity in the Kraichnan
model (and see below for detajlsin the isotropic sectorl( U, Hub(r’ t))y=W*E(r—r")s(t—t"). (2.3

=0) we recover the well known result §2]. It is notewor-
thy thaF for higher valges of the' di'sc.rete spectru'm is'a Here the symboIsT and () stand for independent en-
strictly increasing fl_Jr!ctl_on of. This is |m_portant, since |t_ semble averages with respect to the statistics afd u,
shows that for diminishing scales the higher order scalingyhich are givena priori. We will study this model in the
exponents become irrelevant, and for sufficiently smallmit of large Peclet(Pe number, PesU \A/x,, whereU ,
scales only the isotropic contribution survives. As the scalings the typical size of the velocity fluctuations on the outer
exponent appears in power laws of the ty@ ), with L scaleA of the velocity field. We stress that the forcing is not
being some typical outer scale aRe&< A, the larger the ex- assumed isotropic, and actually the main goal of this paper is
ponent is, the faster is the decay of the contribution as theo study the statistic of the scalar field under anisotropic forc-
scaleR diminishes. This is precisely how the isotropizationing.
of the small scales takes place, and the higher order expo- The correlation function of the advecting velocity needs
nents describe the rate of isotropization. Nevertheless for infurther discussion. It is customary to introdudg*”(R) via
termediate scales or for finite values of the Reynolds andts k representation:
Peclet numbers the lower lying scaling exponents will appear
in measured quantities, and understanding their role and dis-
entangling the various contributions cannot be avoided.

The organization of this paper is as follows: In Sec. Il we

8 eD (r-1d% s )
WERI= G [ s P -ipR), (24

recall the Kraichnan model of passive scalar advection, and pepf
introduce the statistical objects of interest. In Sec. 11l we set P“'B(p)=[5aﬁ— |, (2.5
up the calculation of the correlation functions of gradients of P
the field. It turns out that it is most straightforward to com- ) )
were P%(p) is the transversal projector,Qy=(d

pute the fully fused correlation functions of gradient field, as
these objects depend only on the ratio of the outer and inner.
scales. We compute these quantities and their exponents
first order ine. We introduce the appropriate irreducible rep-

resentations of the S@J symmetry group and evaluate the and inner scales of the driving velocity field, respectively.

scaling exponents in all its sectors. In Sec. IV we turn to the]'he scaling exponent characterizes the correlation func-

correlation functions of the passive scalar field itself, andj < of the velocity field, lying in the interval0,2). The
compute the scaling exponents of the structure functions i, tor D is related to the correlation functiof2.3 as fol-
the presence of anisotropy, again correct to first ordes. in |5y

To this aim we compute the zero modes in all the sectors of
the symmetry group. One of the interesting points of this

paper is that the results of this calculation and the calculation
via the correlations of the gradient fields gives the same re- . - o
sults for the scaling exponents if one accepts the fusion rule he most 'r.“portar_“ property of _the drlvmg. velocity field

To clarify the issue we prove the fusion rules here in all the'™o™ the point of view of thf scaling pr_oper,tles of the pas-
sectors of the symmetry group by a direct computation of th&1Ve Scalar is the tensor of “eddy diffusivity[1]

fusion of the zero modes. In Sec. V we offer a summary and
a discussion.

1)Q(d)/d, and Q(d) is the volume of the sphere id
mensiondi.e., Q(2)=2m, Q(3)=4=]: Equation(2.4) in-
troduces the four important parameters that determine the
statistics of the driving velocity fieldA and\ are the outer

W(0)=D 8os( A= \°). (2.6

K§$P(R)=2[W*A(0)—W*A(R)]. 2.7
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The scaling properties of the scalar depend sensitively on thehere {«,,} is a set of evenn vector indices{a}
scaling exponenk that characterizes thR dependence of =a;,a5,...,a,. We introduce also one-point correlations,
K-‘F’B(R): which in the space homogeneous case are independent of the
space coordinates:
k§P(R)x[AS=\]8,4, for R>A,
Hieml=gqoace o fr —ry), (2.15
e RRF

KRR S~ G R

A<R<A. (o) ) )
The tensorH ™ ({rm}) can be contracted in various ways.
For example, binary contractions = a,, az= a,, etc. with

We are interested in the scaling properties of the scalagt_ 2! '3~ 4. etc. produce the correlation functions of the

. . - dissipation field VT|2.
field. By this we mean the power laws characterizing fhe . . . .
) ) : When the ensemble is not isotropic we need to take into
dependence of the various correlation and response functions h lar d d Rofand th lina beh
of T(r,t) and its gradients. We will focus on three types of account the angular dependenc nd the scaling behav-
uanti,tieS' ' ior consists of multiple contributions arising from anisotropic
q 1) “Un.fused” structure functions are defined as effects. The formalism to describe this is set up in Appendix
A and in the forthcoming sections.

The correlation functions™, satisfy the equatiofl]

(2.9

Sn(rlvr_l!"'rn 1r_n)E<[T(rlit)_T(r_lvt)][T(r21t)

_T(r_th)][T(rn at)_T(r_n !t)]>’
(2.9

1

n n
—xo2, Vit EijE:l kFP (=) VEVE Folfrmb)

and in particular the standard structure functions are

1 n
=32, PO a{Tmmey), (216
Sn(R)=([T(r+R,t)—=T(r,1)]"). (2.10
where{r}m+ij is the set off allr,, with m from 1 ton,
except ofm=i and m=j. SubstitutingK‘T’B(r) from Egs.
.6), (2.7) one gets

In writing this definition we used the fact that the stationary
and space-homogeneous statistics of the velocity and t
forcing fields lead to a stationary and space-homogeneou
ensemble of the scaldr. If the statistics is also isotropic,
then S, becomes a function oR only, independent of the

n

—k2, Vi 2 W (=) VEVE F({rmh)

direction of R. The “isotropic scaling exponentsZ,, of the =1 {i#]1=1
structure functions \
1
S,(R)=R, 2.19) =§{i#12}=1 O(ri—r)Foo{rmpmsi ), (217
characterize theiR dependence in the limit of large Pe, \yhere
whenRis in the “inertial” interval of scales. This range is
<R< . R _o
f7i7eIdR A, L, where 7 is the dissipative scale of the scalar k= rg+ D[ A= \<]. (2.18
) Le Here we used that in the space-homogeneous EdsgV;
nzA(BO) . (2.12 =0 and therefore
( ) dd ; | n 2 n n
2) In addition to structure functions we are also inter- _ 2 aygf_
) . ; ) Vil =2, Vi+ Vive=0.
ested in the simultaneough-order correlation functions of 2 ' izl ! {i;qz}:l b

the temperature field, which is time independent in stationary
statistics, Consider thek-Fourier transform ofF;,, which is defined as

Faldrmh)=(T(r{,0) T(ry,t),....T(r,,0)), (2.13 n
<2w)da(2 ks)ankm})

where we used the shorthand notat{op} for the whole set s=1
of arguments of nth-order correlation function n
Fnil1.la,0 0. =f drpexplikm rm) [ Fal{rm)-

(3) Finally, we are interested in correlation functions of ngl m EXWTKm- Tm) | Fo({Tm})
the gradient fieldV T. There can be a number of these, and (2.19
we denote '

Here thed function applies to a homogeneous ensemble

n
{orm} - Ty in which F,({r,}) depends only on differences of coordi-
H rmp)= Vet t)]), 2.1 Ml m .
n " ({rmb) <|H1[ (ry )]> 214 nates. FoiF,({ky}) Eq.(2.17 yields:
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d%
FJ_PQ (p)

A1

eD
KFotknb) 2 KP+ G

n

X > KKEEL(ki+ P,k — P Kmbmei )

{i#j}=1
=D, ({Km}), (2.20
. 2md 2
<I>n({km})E( ;) > D(k)a(ki+k))
{i#j}=1
Xanz({km}m;&i,j)a for n>2, (2-2])
Fi)(k)=J dRexpik-R)P(R). (2.22

Here @ (k) is the Fourier transform ofb(R) and ®,(k)
=® (k). Equation(2.20 may be rewritten as

eD (r-1d% DN G

Frilknh) == | Lpre P =g
S= S

D({kim})

Fn(kl p1kj pa{km}m#l,]) KErs]zlkg

(2.23

This equation will serve as the basis for future analysis in

Sec. lll.

Ill. SCALING OF THE TEMPERATURE GRADIENT
FIELDS

A. Basic equations ink representation

It appears that Eq2.23 is as difficult to solve as Eq.
(2.16. In fact, very important information about scaling be-

havior may be extracted from E@.23 for small € [8]. In

order to develop our method we will analyze first the simul-
taneousn-point correlation functions of the gradient fields

Hff"“}({rm}) and Hff‘m} of Egs.(2.14), (2.15: These objects

are expressed in terms Bf,({k.,}) as follows:

o ({rah) = 2m) 4 | T [d%kes explik )]
=1

(3.9

n({km}>5< 2 ks> ,

Hiam}:(z’TT)(l_n)dJ‘ H [ddkikai]Fn({km})5( 21 ks)-
i=1 S=
(3.2

From this and Eq(2.23 one gets
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eD [ 17 k%
kQq) (2m)n-be

n
Hym=— 5( > ks)
s=1
JH d’p PA(p)2fi. )1k}
A1ptte Se-1KS

X Fn(ki+p,kj_pa{km}m#i,j)+‘ll§1am}'

T2 1kg=d%s & ({kpn})

{am}E
\I,n (2,”.) n—1)d k2n71k2 )

é ) (3.3

Shifting the dummy variablek; — p—k; andk;+p—k; we
have another representation of this equation:

n n -1
156 3, )0
s=1 {i#j}=1 JA
4% (k"= p=i) ("I + p“i) P*(p)ki'kf
pTTe 2p2+2p- (kj—ki) + 20 1kS

<l

s=1s5#1,j

n d
H{am}: _ 6D Hs:ld kS
n kQq ) (27)n-Dd

KESF o({kep}) + W Lem (3.4

In order to analyze this equation further we choose to non-

dimensionalize all the wave vectors hy. We write kq
=AKkg, P=Ap, etc., and for simplicity drop the tilde signs
at the end. We simplify the appearance of the equation fur-
ther by introducing the definition of the dimensionless func-
tion

{k }s#l ka j!p)
dp(k("i— p) (K + p®) PAFi(p)
Qd2p2+2p'(kj_ki)+22:1k§ ,

(3.9

wheredp stands for integrating over all the angles of the unit
vectorp=p/p. The resulting equation is

CEE N

A;:;;({kﬁq}s;&i,jki K, p)kPikPi

1m°_,dd%,

{”‘m}_ YGESOT|
H =g (2 )(n 1)d

edp

X p1+e

<l

KRk WL
s=1s#i,j

(3.6

where the dimensionless factgris

DA€

9= et D(A—r9)" 3.7

In fact, we should recognize that the natural expansion pa-
rameter is actually nag, but@, where

AN Edp
g gf 1+e (38)
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Evaluating the integral we find " . d% n n AN
H{am}zgf_s_(ln—1;5 > k| > f
n.1 (2m) &1 ) if=
=AM (3.9 d
g: €__)\ €)' ) € p a;a; X .
Kot DAY X e Ag gl (ks ki Ky PR

We will see below thaf can take on very different values in " o

different limiting cases. In particular it can be ©f €) or of XS:ISL J, Ks*Fno({km}).- (3.13
O(1) depending on the order of limits. The relevant limit for T

the physics at hand will be discussed below. At this point Werecall that the functionb (k) is constant folkL<1 and it
perform a calculation onf“m} to first order ing in all the  vanishes fokL> 1. Therefore the leading contribution to the
sectors of the symmetry group. integrals(3.13 over k; comes from the regiok;L<1. In
integral(3.13 p>1/A and in all our approaches we consider
_ L L>A. Therefore in(3.13 p>k; and this equation may be
B. Theory to first order in g simplified up to:

The theory forF,, andH,, can be formulated iteratively,

resulting in the following series: H{“m}—Nf H2=1ddks 5 ( é ) ) n fA/)\ edp

. . n1 9 (2m)n-Dd% | & K WA pl¥e

Fn({rm}):qZO Fn,q({rm}): Hf-,am}:qZO Hfﬁ;n}- n
- - X A IKPiKP KESF o o({Km}), 3.1
(3.10 BiB; 5:11’_5[9&” s n,O({ m}) (3.14

HereF, 4 is the result of they step of the iteration procedure where now
of Eq.(2.23, F,, >89 There are two contributions for each 1
term of orderg9. One arises from substituting, ,—; into A% = _f dppeipeipP ? 3.1
the integral on the right-hand sid&HS) of (2.23, and the mm— 204 ) PPP si6,(P) @19

second arises frorfk,_,4, which appears inb, according is the constant tensor that obtains from the tensor function

to (2.21). Correspondingly, alsél, , has two contributions. (3.5 when all k.<p. Performing the all the wave-vector

One is obtained from Ed3.6) when we substituté, ,_,in .
the integral on the RHS, and the second when we substitut'(ra]tegraIS we observe that the expliaitis canceled by the

Fy 24 in the term denoted a¥,. integral overp. Accordingly

In this section we compute explicitil, ;. Analyzing the n
relative importance of these two contributions Kg, ; we Hiam=g > a%iciyPfibilamtmei) (3.16
. . . .. ’ n,1 g | &~ BiB; no0
found that the second contribution is negligible compared to {i#j}=10 7"

the first whenA <L. In other words, we can disregard the
contribution toH , ; that arises fronf,,_,,. This means that
for the sake of our ite~ration procedure we can repl@q:,e’n  Saa(d+1)— 5aiBi5a-B-_ a.5-5a-ﬁi
(2.23 by the quantityd,, o, which is of O(g°). This means AZ{Z!: ! 2(d+2)(dl—Jl) L 317
that instead of Eq(2.23 we iterate o

An actual integration in3.15 yields

N LB C. Analysis in all the anisotropic sectors
ED )\71 ddp E{i#j}=lki k]

p*B(p) ———2—_ °
gy pTe P TP T e

Fo{kmp)=— We note that Eqg2.17) contain only isotropic operators.
On the other hand(r;—r;) can be anisotropic, depending
X F (ki P,k = P Kbt 1) + Fro{Km}) on the direction of the vectar—r; . Since the equations are
linear, we can expand all the objects in terms of the irreduc-
(3.11) ible representations of the S@)( group of all rotations, and
be guaranteed that the solutions foliate in the sense that dif-
ferent irreducible representations cannot be mixed. This con-
siderations are valid for all the equations in this theory, in-
cluding Eg. (3.16. To know which irreducible
representations we need to use in every case one has to con-
sult Appendix A. After doing so one notes that for any order

D of {knm})
Fn,o<{km}>=k2°n—flki,

n
B ik )= (2m)" S @(k) (ki +k;) g, the tensorsk-li‘i;“} are constant tensors, fully symmetric in
noLEm 2 i U all their indices. Using the exposition of Appendix A we
know that the projections on the irreducible representations
XFoozd{Kmfmsi,j)- 312 4f the SO¢) symmetry group must be of the form

. . . {oml _\ (hplamt
Thus we are interested in calculating Hn,q”,'ﬁkg Bion: (3.18
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Our first order calculation is aimed at finding the ratio If we expect thaH{" is a scale invariant function of/\ we

)\(1')/)\(()') . Substituting(3.17), (3.18 in (3.16 we find can interpret Eq(3.23 as the beginning of an expansion that
can be resummed into a power law
{am _ g i A (1 ()
Hy = S| (A1) 2 885 5 N0 A Al
2(d+2)(d 1) i#] J Hgl): x) HE]l)o (3.29

BiBitamym#i,j aj Bi aj o
*Bion ;1 Lo igﬁj + 5ﬁ15 :] Of course, this is hardly justified just by examining Bée)
term, since one can have more than one branch of scaling
X)\(')Bﬁiﬁi{“m}} exponents proportional te If we havem branches only the

0 Zlon analysis up td(e™) can reveal this. We return to this issue

in the next subsection. An additional issue is the magnitude

B [¢ (d+1)z,, _ 1) [\Oglem of \ that can be arbitrarily small, making any reexponentia-
- (d+2)(d—1) 2 n(n=1)\Ao’By Ty tion even more dubious. To overcome this problem one usu-
ally invokes the renormalization group equations to justify
Defining nowA{ via the relation the exponentiation. We shortly present this method next. In
doing so we want to argue that for the case in question there
H<n',>1=§A§,”HE{%,, (3.19 is nothing more in this approach than direct reexponentiation

as long as higher order terms émare not included.
Within the renormalization group meth¢é] one consid-
ers Eq.(3.23 as the “bare” value oH{’, H{);. One then
seeks a multiplicative renormalization group by defining a
(3.20 renormalized function

we conclude that

A(I)_Zn(d+ n) (d+1)I(l+d-2)
nood+2 2(d—1)(d+2) °
HOR(, AL ) =Zp(, A NHB(AN). (3.29
D. Interpretation of the result Hereu is a “running length,” and the only. dependence of
To interpret the result3.19—(3.20 we should observe the RHS is through th&, function. DefiningZ, so that it
that the nature of the theory that we develop depends on treliminates the dependence of the left-hand $ld¢S) on A
order of the limits that we take. We should recognize that theand setting the initial conditiod, r(A A, ...)= HS,")O we get
guantity Hi‘“’“} does not exist without an innduoltravioled 0
cutoff. We are thus interested in limiting valuesgsubject Zu(p. M) =1+ €Aq"In(N p). (3.26
to the condition that; is finite. Thus one order of limits that
makes sense i&—0 first (corresponding to the Reynolds
number going to infinity firgt and thene going to zero sec-

From Eq.(3.25 we get

dIn[H{R(,A,..)]

ond, but keepingy fixed [for example by controlling<, in =4, (3.27
Eqg. (2.12]. Another order of limits iss—0 first (still keep- dinu
ing » fixed, but very sma)lwith \ being fixed and larger
than 7. where
If we haveA—0 first, and then where—0 second we = — AV +O(e). (3.29

find that the expansion parameter is close to unity:

Solving the differential equatiofB8.27) we get
<1. (3.21

7\ U
O~1—|—+| , for eln|—
? (A) (A .) ol
H! ,A,...:(—) Hpo- 2
Thus we cannot stop é8.19, and we are forced to consider R4 ) yes no 3.29
higher order terms in the expansion gnand appropriate o . . 0
resummations. This is done in Sec. Ill F. On the other handEXPonentiating3.26 and solving Eq(3.29 in favor ofHy s
if e—0 first, we find an apparently “small” expansion pa- We recover Eq(3.24). Note that the inner scale in this case is
rameter that is proportional ta \, sinceA> 7. This fact casts an additional doubt on this
limit of the theory, since it misses altogether the existence of

A n the Betchelor regimg9] between\ and 7. For all these
O~e€ In(:), for € In(X) >1. (3.22 reasons we tend to disqualif®.24) despite the relative sim-
plicity of its derivation. We turn next to the other limiting
procedure.
E. Exponentiating using renormalization group equations
Using Eq.(3.22 in Eq. (3.19 we get F. Theory for A—0 first
A Considering the limin—0 first, Eq.(3.19 is still valid,
_ (OX™ 2y |y (h but nowd is of order unity, and we cannot justify reexpo-
Hy =] 1+ eAn In N +0O(e%) [ Hno. (3.23 nentiation. The small parameteseems to have disappeared.
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~ ~ I
0~ A~ ~ ~ ¢
~ T |
o -_— ~~ ~ ~ ~ 1
. .
o~ ~
o Ol, o~ y
2n - 2
? + N + ...
2l
FIG. 1. The graphic representation of E§.3). \T/
This forces us to consider all the higher order term§ ito
understand how to resum them. We will see that at theeend FIG. 3. The graphic representation of the iteration scheme.

reappears.
The resummation of thg dependence is aided signifi- appears once we have a sum over all pgjridices withi
cantly by some graphic representations of the relevant equa+j. When it appears twice there is a double sum, with re-
tions and their perturbative solutions. In Fig. 1 we represengpect to the pairs#j andl+m. In analyzing such diagrams
graphically the definition(3.2) of H{n“m} in terms of one needs to identify three distinct possibilities. These are
Fn({km}). This helps us to introduce the basic diagrammaticdenoted as case), i=I, j=m, case(b) i=I butj#m, and
notations. case(c) where all the indices are different. There are two
A solid long rectangle witma,,, wavy lines stands for integrals ovep,; andp, in the loops to the left of the corre-
Hiam}, while the elongated solid ellipse represefits The sponding ellipse. We refer to the functioss of Eq. (3.5

that appear in these integrals As and A,, respectively.
ks wave yegtor_s are denoted_by arrows, ks .the gois reprPAnaIyzing the integrals it is useful to separate the discussion
sent multiplications. The vertical line connecting all the ar- . . : . . .
. . . : to region I, in whichp;>p,, and region II, in whichp,
row heads stands for the integration withsdunction over . S
X . . . >p;. In region | we can neglect the contribution pf and
the sum of all the&k vectors. Figure 2 is a graphic notation of all k. with respect t Accordinaly we have two indepen-
Eq. (3.6). The little ellipse with a vertical arrow designated S, P P gl ; P
i dent integrals and sums, and the result is therefore
by p stands for the tensor funcuohﬁiﬁj({ks}sﬁvjki Kj.p).
This ellipse is involved in the integration over the vegtdn
the loop to the left of the ellipse with a weight consisting of
the sum of squares of thevectors.

The thin elongated ellipse in the second term on the RHSvhere the factor 1/2 stems from the fact that the volume of
stands for the zeroth order terRy, o, cf., Eq.(3.12. The  region | is a half of the whole volume of(,p,) space. In
actual values of the wave vectors are indicated in this diaregion Il we should distinguish between the caas (b),
gram. In later diagrams, Fig. 3, we drop this obvious notaand(c), for which the evaluation oA, will be different. In
tion. In F|g 3 we dISplay the perturbative Solution, which Case(c) Eq (35) shows tha‘tAZ is of the order Ofp%/pi,
results from the iteration procedure in H§.11), the result  \hich is small. In caséb) A, is of the order ofp,/p;,
of WhICh is sybstltuted in Eq3.3). 0 which is still small. Only casé¢a), in which the loops appear

The first diagram on the RHS 14, whereas the second as two rungs on the same ladder, we hAyeof the order of
is the first order termH{}, Eq. (3.19. The last diagram unity. The actual calculation of this integral is presented in

shown inH{,. One should note that when ti#€;'J ellipse ~ Appendix B, with the final result
, B,

1
Hi b= [GAL 1?Hyp (region ), (3.30

— L K I INUING :
o, a, 0 ! Hn12=§g Ay'Hho [region I, case(@]. (3.3D)
~ - '-p,r\l & Together the second order result faf), is
= P +
~ a, _J kﬁf ™ P
k4] . 1
. ' HRb=5T2AY +(AY)2IHG. (3.32
Oz o~ Otz Oy "
- ka2n k%n pa 2n

2n 2n 2n

Our aim is to find the fully resummed form, correct to all
FIG. 2. The graphic representation of Eg.9). order ing andA{, of HI . We can express it in the form
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H=K (@A H Y, (3.33

where the functiork (g,A\") is represented as the double

infinite sum

K(@,A)=1+ > A™> D, &" (3.34)
m=1 s=m

Up to now we have information abou?;;=1 andD,,
:D2,2: 1/2

In Appendix C we derive the following recurrent relation

for the higher order terms

2 Dgm- (3.35

m+1s

1
DL§:§-

Using (3.39 in Eg. (3.34) we find the contribution propor-
tional to A:

Ky(,A) =AY,

s=1

——Aln(1-7). (3.36

g
B

Considering all the terms quadratic & and using the re-
current relations to determirie, s we find

~Ss 1
2(G,A)= AZE Z =. (3.37
s=2 S qg=10

This double sum is computed in Appendix C with the result

2(9A_—[ Aln(1-9)1% (3.39
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~1), while neglecting terms oO(e). However, the sums
(3.389—(3.39 result in expressions containing{ 1)«e. In
other words, we end up with terms that appear of the same
order as those neglected during the procedure. In order to
justify the results(3.42 we must go back and analyze con-
tributions of O(€). These appear, for example, in contribu-
tions in which the “rungs” appear on adjacent ladders, like
case(b) in region Il. The two “simple” rungs appearing in
two adjacent ladders can be now considered as a single com
pounded rung. We focus now on the infinite set of diagrams
in which this compounded rung repeats many times. The
sum of such diagrams will again generate results containing
(§—1), and in the end will be responsible for terms of
O(€?) in the scaling exponent.

The reason for this phenomenon is the structure of the
iterative solution. Sums of terms of ordgrhave cancella-
tions, leading eventually to a result @(e). The sum of
terms ofO(e€) have a very similar structure, just we a rede-
fined “rung.” Therefore they automatically generate another
factor of € by resummation. This phenomenon repeats in
higher orders, again by redefining what do mean by a
“rung.”

Thus Eq.(3.42 can be considered as the final result for
the scaling of the fused correlation function of gradient fields
with the exponent correct t@(e€). In the next section we
turn to the calculation of the scaling exponent of the unfused
correlation function of the scalar field itself. We will show
that the exponents computed in both methods agree when the
same objects are evaluated. This agreement is connected in
the final section with the existence of fusion rules that con-
trol the asymptotic properties of unfused correlation func-
tions when some coordinates are fused together.

The general result can be derived using similar techniques V. ZERO MODES IN THE ANISOTROPIC SECTORS

with the result

1
Kn(@A)= —[~AIN1-8I" (339

Accordingly we conclude with the series f&(,A):

- Aln(1 m
Z w—exq—mml—@)].
(3.40
Using now Eq.(3.2) one finds
A eA
K(g,A)= —) . (3.41)
n
Finally, using Eq.3.33 we have the final result
()
A €Ay
H§P=(; HY. (3.42

We are pleased to find that the inner scale is ngwin

A. Calculation of the correlation functions

In this section we consider the zero modes of E716).
In other words we seek solutio@s({r,,}) that in the inertial
interval solve the homogeneous equation

n

>

_ K%B(ri_rj)VianBZn({rm})zo-
i#]j=1

4.9

We allow anisotropy on the large scales. Since all the opera-
tors here are isotropic and the equation is linear, the solution
space foliates into sectofko} corresponding to the irreduc-
ible representations of the S@)( symmetry group. Accord-
ingly we write the wanted solution in the form

zn<{rm}>=§ Zot.o({rmb), (4.2

whereZ,, | , is composed of functions that transform accord-
ing to the(l,o) irreducible representations of S@)( Each of
these components is now expandec.inn other words, we

agreement with our expectation. The exponentiation wasvrite, in the notation of Ref2],

achieved naturally in the present case.

In assessing this result, we need to return to a delicate

point in the derivation of Eq(3.42. The procedure involved
summing all the terms of the order of unifpowers ofg

Zn,l,a'= En,|,0'+ EGn,l,a+O(62)- (43)

For e=0, Eq. (4.1 simplifies to
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3, ViEno{rh) =0, (4.4 Gn,lg<{rm}>=j§k HIS (b Ingr ) +Hy o ({rmb),
(4.10

Whererf‘U({rm}) andH, ,({r,}) are polynomials of degree

n. The latter is fully symmetric in the coordinates. The

n former is symmetric irr;,r, and separately in all the other
V3G =V.E , 4. {rmfmzi]-

21 Grtol{Tmb) =VoEn 1 o({Fm}) 49 Substituting Eq(4.10 into Eq. (4.5 and collecting terms

of the same type yields three equations:

where €V,, is the first order term in the expansion of the

for any value ofl, o. Next we expand the operator in Eq.
(4.1 in e and collect the terms dD(e):

operator in(4.1), Z Visz-Eo—:Vj'VkEZn,l,tﬂ (4.1
n a B
Vo= ;1 8P In(ry) — R VivE, (4.6 o rhrhveve
1#k= jk Z[d_2+rik'(vj_vk)]H{,a+d_—l 2n,l,o

wherer =r.—r. 2 ik

k=T Tk =—r4sKl

In solving Eq.(4.4) we are led by the following consid- SRS “-12

erations: we want scale invariant solutions, which are powers
of rj, . We want analytic solutions, and thus we are limited > V2H .= K[*. (4.13

to polynomials. Finally we want solutions that involve all the i j#k
n coordinates for the functiok, ,; solutions with fewer _

coordinates do not contribute to the structure functi@g. Here Kff(,, are polynomials of degree— 2, which are sepa-

To see this, note that the unfused structure function is #ately symmetric in thg,k coordinates and in all the other
linear combination of correlation functions. This linear com-coordinates excegtk. In Ref.[2] it was proven that fot
bination can be represented in terms of the difference opera=0 these equations posses a unique solution. The proof fol-

tor &j(r,r") defined by lows through unchanged for ary 0, and we thus proceed
to finding the solution.
8(r,r Y FLr ) =Frab)lr = = F{rmPlr —¢r . (4.7 By symmetry we can specialize the discussiorj ol k
! ! =2. In light of Eq.(4.12) we see thaH % must have at least
Then, a quadratic contribution in;,. This guarantees th&4.10 is

nonsingular in the limitr,—0. The only part ofH ,1%, that

will contribute to structure functions must contaig - -r,, at

Sn(rl,ri,...,rnr,’])=H Si(rj r)F{rm}). (4.8 leastonce. Sincblﬂf, has to be a polynomial of degreen
J the coordinates, it must be of the form

Accordingly, if F({r,}) does not depend om,, then HI2 = f1p o2 93 OnCaraz ot [ ], (4.14)
Si(ri,r ) F({rm}) =0 identically. Since the difference opera- 12123 " ’

tors commute, we can have no contribution to the structurg\,here[...]12 contains terms with higher powers pof, and
functions from parts of* that depend on less thancoordi-  therefore do not contain some of the other coordinates

higher order ones are negligible in the limjg<A. Accord- 2

X - - ! . ture functions. Sincdﬁ,lyg has to be symmetric in;, r, and
ingly, Ey 1 » with I<<n is a polynomial of orden. Consulting r4 -1, separately, and it has to belong to lawr sector, we

Appendix A for the irreducible_ representations of the 8D( .5 cjude that the constant ten€dmust have the same sym-
symmetry group, we can write the most general form Ofpetry and to belong to the same sector. Consulting Appendix
Enl., Up to an arbitrary factor, as A, the most general form o€ is

Enio=ri T Bl ] (@9 Gz on=aBy} 12+ b B
Wherg[---] stands for all the terms that contain less thman +c > sv SUHBLI (4 15
coordinates; these do not appear in the structure functions, i£]>2 n=alo
but maintain the translational invariance of our quantities.

The appearance of the tend®f!“" of Appendix A is jus- ~ Substituting in Eq(4.12) one finds
tified by the fact thag, | , must be symmetric to permuta- wp ay s
tions of any pair of coordinates on the one hand, and it has to Fofofa™Ton 0 o
: ; (d+2)H2 + === “Igat

belong to thd, o sector on the other hand. This requires the lo 2d—2 2nl,o
appearance of the fully symmetric tengéis).

In light of Egs. (4.5—(4.6) we seek solution for 1 @1, @) sajappe 12
GO({r,) of the form T3l 0K e (4.19
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Substituting Eq.(4.14 and demanding that coefficients of

faiaj(ri |r_i!rj !r_J)
the termr J*...r »" will sum up to zero, we obtain

=(ri=rpari=rpsn(ri—r+ -

—2(d+2)a— -0,

2d-2

—2(d+2)c=0; =c=0. (4.17

The coefficienb is not determined from this equation due to g its coordinates bys. A direct calculation yields:
possible contributions from the unknown last term. We de-
termine the coefficienb from Eg. (4.11). After substituting

4913

X =T In[ri=T;| = (r =) “i(r;=T))*
XIn[ri=7r—(Fi—ry)(ri—rynfri—ry|.
(4.23

The scaling exponent af, | , can be found by multiplying

the forms we find

aqay ag, ... Ao,y an aqay ag,ag,..., an
46 ry r2n[aB +bd an—2,|,a]

2n,l,o
— 5(11(12',&3...rant%’l“O'_’an_i_[...]1’2_ (418)
Recalling the identitf A6) we obtain
b= 2" [1—4a] (4.19
4d ' '
Finally we find thata is n,| independent,
1
a= (4.20

- 2(d+2)(d—-1)’

whereas does depend on andl, and we therefore denote it

asby |

by, (d+1)

) Zmzrm . (42])

In the next subsection we compute from these results the
scaling exponents in the sectors of the 8PEymmetry

group withl<n.

B. The scaling exponents of the structure functions

Sn,l,a(lu‘rl ,,U/i'l ,)
:Iu’nSn,l,a(rl ’i.l 7) _26,11," ln’u
no 1,j
m— e,
x; AT LA ATAY

no i,j
——
X[aB:}] """ “1+b, 6% BT+ 0(€%),

N 2,10

=S, 1 o(r Frs)—2en” In pAT LAY

no 1,j
——
AYyenns ay, ia; AY ey ay,
x;j [aBn,l,a +b",15a “ Bn*Z,I,U ]
+0(€?).
Using (A8), we find that
no 1,j
——
E [aBal ..... a"+b 5aia1’ Bal ..... an]
4 n,l,o n,l ’ n—2l,0

i#j

=[n(n—1)a+b, B "%,

nl,o
and therefore, we finally obtain
J=p"{1-2€¢[n(n—1)a+b, ]Inu}

X8n(r1,T1;...)+O(€)?

Snlpry, pmry;..

We now wish to show that the solution for the zero modes
of the correlation functionsr,, (i.e., Z,) result in homoge-
neous structure functions,. In every sectodl<n, o we
compute the scaling exponents, and show that they are ind
pendent ofo. Accordingly the scaling exponents are denoted

(1) —
= uén Sp(ry,T1;...) +O(€2).

dhe result of the scaling exponent is now evident:

£\, and we compute them to first order én
Using (4.7), (4.8), the structure function is given by

Sn,],a'(rn ,i.l Seees Ty ,i.n)

:Aal AanBal ..... ay,
1 °°*n n,lo
no 1,j
—N—
+€;. ATl LA (g Ty LT T)
1#J
no 1,j
——
A yeens o a: Ay yenns o
><|:aBn,ll,tr n+bn,15a1a]B ! n]’

n—2l,0

(4.22

whereA=r"—T7, and the functiorf is defined as:

é’ﬂ)=n—2€

n(n—1) (d+1)
T 2d 2 d—1) " Ad+2)(d—1) 2

+0(€?)

=n—e

n(n+d) (d+1)I(1+d-2)
2(d+2) 2(d+2)(d—1)

+0(€?). (4.29
Forl=0 this result coincides witf2]. This is the final result

of this calculation. It is noteworthy that this result is in full
agreement with(3.42 and (3.20), even though the scaling
exponents that appear in these results refer to different quan-
tities. The way to understand this is the fusion rules that are
discussed next.



4914 ARAD, L'VOV, PODIVILOV, AND PROCACCIA PRE 62

C. Fusion rules I-dependent scaling exponents, and is of course a power law.

The fusion rules address the asymptotic properties of thd € result shows that tHedependent part is independent.
fully unfused structure functions when two or more of the 1his means that the rate of isotropization of all the moments
coordinates are approaching each other, whereas the rest Qfsthe distribution function of field differences across a given
the coordinates remain separated by m:Jch larger scales. scale is the same. This is a demonstration of the fact that the

full discussion of the fusion rules for the Navier-Stokes anddistribution function itself tends towards a locally isotropic
the Kraichnan model can be found [ii,10]. In this section distribution function at the same rate. We note in passing that

we wish to derive the fusion rules directly from the zero tO first order ine thel-dependent part is also identical o,
modes that were computed @(¢), in all the sectors of the & quantity Iw_hose isotropic valug is not anomalqus. For all
symmetry group. In other words, we are after the dependence 1 alsoy’ is anomalous, and in agreement with tire 1

of the structure functiorS,(ry,f1;...) on itsfirst p pairs of ~ value of Eq.(1.1). Significantly, for{, we have a nonpertur-
coordinatesry,T1;...;f,,T, in the case where these points bative result that was derived 7], namely,

are very close to each other compared to their distance from

the othern—p pairs of coordinates. Explicitly, we consider

the case Wherel,r_l;...;rp,r_p<rp+l,r_p+'1;...;.rn,r_n'. (We §<2'>=3{2—d—e
have used here the property of translational invariance to put 2
the center of mass of the firsp2coordinates at the origin.
The calculation is presented in Appendix D, with the final + \/(2—d—e)2+ 4(d+e-Dl(d+1-2) ’
result[to O(€)] d-1
Sno(F1. T2 ) ®
P
= 2 2 YieSpio (11, 15l plp)- valid for all values ofe in the interval(0,2) and for alll
=Tmax o' =2. This exact result agrees after expandingDige) with

(4.2 (4.24 for n=1 andl=2.
Our second motivation was to expose the correspondence
In this expression the quantity; , is a function of all the between the scaling exponents of the zero modes in the in-
coordinates that remain separated by large distances, and ertial interval and the corresponding scaling exponents of the
gradient fields. The latter do not depend on any inertial

scales, and the exponent appears in the combinaﬂ(bﬁ)éln,

We have shown that the LHS has a homogeneity exponel’ﬁ’heref is 'Fhe appropr_iat_e_ ultraviolet inner cutoff, eitheor

¢, The RHS is a product of functions with homogeneity 7 depgndlng on the limiting process. We foqnd exact agree-
n ) . : : . ment with the exponents of the zero modes in all the sectors

exponents/,;” and the functions; ;. . Using the linear in- of the symmetry group and for all values of The reason

dependence of the functio§, ; ,» we conclude that; '

. Y () o behind this agreement is the linearity of the fundamental
must have homogeneity exponet{’—¢{). This is pre- equation of the passive scal@:1). This translates to the fact

cisely the prediction of the fusion rules, but in each sectoky5 the viscous cutoffy, Eq. (2.1, is n and| independent,
separately. One should stress the intuitive meaning of thgng 150 does not depend on the inertial separations in the
fusion rules. The result shows that whpreoordinates ap- nfysed correlation functions. This point has been discussed
proach each other, the homogeneity exponent corresponding getajl in[7,11]. In the case of Navier-Stokes statistics we
to these coordinates becomes smp&&) as if we were con-  expect this “trivial” correspondence to fail, but nevertheless
sidering ap-order correlation function. The meaning of this the “pridge relations” that connect these two families of
result is thap field amplitudes measured piclose by coor-  exponents has been presentefllif] for the isotropic sector.
dinates in the presence of-p field amplitudes determined Finally we note that in the present case we have displayed
far away behave scalingwise, likefield amplitudes in the  the fusion rules in all thé sectors, using th©(e) explicit
presence of anisotropic boundary conditions. In closing, Wgorm of the zero modes. We expect the fusion rules to have a
note that the tensor functiong .- do not necessarily belong nonperturbative validity for any value af It would be in-
to thej, o’ sector of SOF). teresting to explore similar results for the Navier-Stokes
case.

jma=maX0p+l—n}, I<n. (4.2

V. SUMMARY AND DISCUSSION

_ One motivation in this paper was to understand _the sca_ll- ACKNOWLEDGMENTS
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pization is determined by the difference between theplexity.
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APPENDIX A: ANISOTROPY IN  d DIMENSIONS Uu20%9,Y, (0)=—1(1+d—2)Y, Q). (A2)

To deal with anisotropy i dimensions we need classify
the irreducible representations of the group of all
d-dimensional rotations, S@J [12], and then to find a
proper basis for these representations. The main linear spa

One can easily check that far=3, (A2) gives the factor
I(1+1), well known from the theory of angular momentum
in quantum mechanics. To prove this identity for ahyote

that we work in(the carrier spageis the space of constant at

tensors withn indices. This space possesses a natural repre- lu|2~'%?|u|'Y, ,(0)=D0. (A3)
sentation of SQq), given by the well known transformation ’

of tensors unded-dimensional rotation. This follows from the fact that the Laplacian is an isotropic

The traditional method to find a basis for the irreducibleoperator, and therefore is diagonal in t¥ig,. The same is
representations of S@J in this space is using the Young true for the operatoju|2~'42|u|'. But this operator results in
tableaux machinery on the subspace of traceless tefl&lrs  a polynomial inQi of degred — 2, which is spanned by, .

It turns out that in the context of the present paper, we do noguch that ' <|— 2. Therefore the RHS dfA3) must vanish.
need the explicit structure of these tensors. Instead, all thatccordingly we write

matters are some relations among them. A convenient way to

derive these relations is to construct the basis tensors from  d?[u'|Y; ,(0)+2|u'[3°Y; 5+ |u']#%Y, 4(0)=0.
functions on the unitd-dimensional sphere that belong to a (A4)
specific irreducible representation. Here also, the explicitl_h . . . . . R
form of these functions in unimportant. All that matters for e second term vanishes since it contains a radial derivative

our calculations is the action of the Laplacian operator o _aaa operating onY; »(0), which depends ol or_1|y. The
these functions. irst and third terms, upon elementary manipulations, lead to

Let us therefore consider first the spaSg of functions (A2).

over the unitd-dimensional sphere. The representation of Having theYL?(u) we can now construct the irreducible
SO(d) over this space is naturally defined by representations in the space of constant tensors. The method

is based on acting on th§ ,(0) with the isotropic operators
u®, 9%, and5*%. Due to the isotropy of the above operators,
the behavior of the resulting expressions under rotations is
similar to the behavior of the scalar function we started with.
where W(0) is any function on thed-dimensional sphere, For example, the tensor field§*AY, ,(0), 9%0PY, ,(Q)

andR is ad-dimensional rotation. transform under rotations according to tHeo{) sector of

Sq can be spanned by polynomials of the unit vedior  sO(d).
Obviously (A1) does not change the degree of a polynomial, Next, we wish to find the basis for the irreducible repre-
and therefore each irreducible representation in this spacgentations of the space of constant and fully symmetric ten-

can be characterized by an intege¥0, 1, 2,..., specifying sors withn indices. We form the basis
the degree of the polynomials that span this representation.

At this point, we cannot rule out the possibility that some By L= goi...gmunY, (0), I<n. (A5)
other integers are needed to fully specify all irreducible rep-
resentations 5y and therefore we will need below another Note that wherl andn are even(as is the case invariably in

ORY (=Y (R 10), (A1)

set of indices to complete thg specificatior!. X this pape, Bﬁfr:}{"an no longer depends o, and is indeed
We can now choose a basis of polynomig¥s (1)} that  fyly symmetric by construction. Simple arguments can also
span all the irreducible representations of 8D0ver Sq.  prove that this basis is indeed complete, and spans all fully

The indexo counts all integers other thameeded to fully  symmetric tensors wit indices. Other examples of this
specify all ireducible representations, and in addition, it la-procedure for the other spaces are presented directly in the
bels the different functions within each irreducible representayt.

tation. Finally let us introduce two identities involving tH&, | ,

Let us demonsrate this construction in two and three dithat are used over and over through the paper. The first one is
mensions. In two dimensions is not needed since all the

irreducible representations are one dimensional and are Sp.a Bl =7 B3N (AB)
spanned byy,(0)=e'? with ¢ being the angle betwesin 2 hon nohon=2

gnd the the vecto@lz(l.,O). Any 'rot.atiqn of the c_oordingtes 2., =[n(n+d—2)—1(1+d—2)]. (A7)
in an angle¢, results in a multiplicative factoe'%o. It is ‘

clear thatY,(0) is a polynomial inli sinceY(0)=[0-p]', It is straightforward to derive this identity usin@2). The
wherep=(1,i). In three dimensiong=m, wherem takes  second identity is

on 2+1 values m=-—I,—I+1,.]. Here Y,

«eM?P"(cos#), where ¢ and 6 are the usual spherical co- wiapiembM#iLi _ pat,.ap

ordinates, andP|" is the associated Legendre polynomial of ;,ﬁ Bionz “Bion I<n=2. (A8)
degred —m. Obviously we again have a polynomial nof

degredl. This identity is proven by writingi" in (A5) asu?u"?, and

We now wish to calculate the action of the Laplacianoperating with the derivative on?. The term obtained as
operator with respect ta on the Y, ,(0). We prove the uzﬁal---a“nu“*ZYm(ﬁ) vanishes because we haveleriva-
following identity: tives on a polynomial of degree— 2. It is worthwhile no-
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ticing that these identities connect tensors from two differenin a diagram withs rungs. After some combinatorial calcu-
spaces: The space of tensors witindices and the space of lations of the weights one finds
tensors withn—2 indices. Nevertheless, in both spaces, the

tensors belong to the samk «) sector of the SGf) group. 1 El
This is due to the isotropy of the contraction wiffi1*2 in Dmﬂ,s_gq:m Dgm- (C2
the first identity, and the contraction wi#fi“i in the second
identity. Together with(C1) this gives
APPENDIX B: PROOF OF EQ. (3.3 15 1
: Q. (3.32 DZ’SZEEI 9 (C3

In case a of region Il wherp;>p,>Kk, the analytic ex-

pression forA, can be simplified to 1571 g%ty

a D3 = - -, (C4)
w1 oaiaa [(AP2 5o ® Sq=2 Uz2q;=1 U1
Azlﬁijﬁj: Epllpllj Q_de'B'(pz)- (B1) 2 !
S 1 s—1 1q371 1q2§31 1 t s
. . " =— — — —, etc.
Using the identities 475 23 0322 U2 =1 Oy
f dp=0(d), Q=0(d) d-1 (B2) The general structure @, s now becomes obvious.
p 1 d d 1
2. Higher order terms in A
f dppepr= 8apQ(d), (B3) Consider the equatio(8.37)
® s s=1 4
we compute Ko(g,A)=A2> = > —. (C6)
=2 Sg=10
we; _ Lo aine Observing that
AZBJB,-: 5P p1'5ﬂiﬁj- (B4) serving tha
Substituting this form into the double rung ladder diagram sl 1[s1) 1 1
results, after contracting all the indices Af andA,, in a 242 21 QJF =1, (C7)
form identical to Eq.(3.195 for A in the one rung ladder = -
diagram. This leads directly to the final equation, B13). 44
APPENDIX C: DOUBLE RESUMMATION 1(} 1 )_ 1 8
1. Calculation of Dy s\lg s—q/ q(s—a)’
In this Appendix we discuss the calculation of the coeffi-we end up with
cientsD, < in EQ. (3.34, and the actual resummation of that
equation. B 1, Coo gt
First, we need to introduce rules to evaluate the rungs in Ko(@.A)=5A 2 > , (C9
a=1d,=1 G102

the general ladder diagram that appear in the expansion. The

rule is actually quite simple: every rung contributes a termypere we relabeled— g, ands—g—q, and changed cor-

proportional togAﬂ) if the p vector associated with this rung respondingly the limit of summation ovep,. Thus
is the largest among all the vectors associated with rungs

appearing to the right of it. Otherwise the contribution is 1
proportional td§. The weight of the contribution is obtained K2(9,A)= EAZ

as a factorc=1 which reflects the proportional fraction of a=

Zo1)? 1 ,
2 E} =5[-AIn1-g))*

the volume of p4,p,,...) space in which the associated or- (C10
dering of thep vecto_rs.is valid. For exa}mple, if the rung with The terms proportional t&3 give
the largesp vector is in the extreme right, then all the other
rungs contribute terms proportional T Thus a diagram zogn St q %!t
with srungs ordered in this manner contributes with a weight K3(G9,A)=A 2 — E — 2 —. (C1))
C=1/s. Therefore =3 N g;=2 02q;=1 01
1 We can rearrange the sums by summing ogern—q;
DLS:g (CY) —q, instead ofn. Using relationships similar t¢C7) and
(C8) we find
The recurrence relation fdD,, s with m>1 is derived by 1 S IR AN
inserting an additional rung that is associated with the largest Ky==AZ> > - (C12)

p vector in any one of thes+ 1) possible positions available 6 qim1d;-1d-1 G10203
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Obviously this leads to no 7,
r—
® o~ 12: E Afl, .. .,Aanfaia.f(ri,i'i,rj,i'j)
g 1 13 l<j<pp<i<n "
Ks(@, A>— P =§[—Aln<1—g>] :
q= q . no i1,j
(C13 N —
X[aB, b, 86BN 0]
The general structure is now clear, leading to E3338). o i
rm——
APPENDIX D: DERIVATION OF THE FUSION RULES =ATL LAY APt AT g Pay(r;,F)

P isjspp<isn
In this Appendix we derive the fusion rulé4.25. Con- no i,j
sider a fully unfused structure function with coordinates, [ gL B “pp, 5% BB’—% ,,,, e
such thatp of them are separated from each other by a typi- [a nlo ]
cal distance, whereasn— p coordinates are separated from

them and from each other by a typical distarReand R no i.j
. . ,—/\_\
>r. We want to compute the asymptotic propertiesSpf _ Gl = o = [ D@L a
. . . I;= AT, AT e , B” "
and show that to leading order iR we find Eq.(4.25. For P en L SR LB,
homogeneous ensembles we can shift the origin to the cente o i
of mass of thep coordinates. In this case we hamues<r; for ,_,j\

everyj<p andi>p. Our aim is to separate the dependence +b, 5“:“;3“1 """ “"]
on the small distances from the dependence on the larg
distances. We will see that some of the termsSiplend

no 1,j

et N
themselves naturally to such a separation, and some call fc =A%, A% > ASPRL AT N F )
more work. We start from Eq4.22), and compute to first Pop<ijen P g
order inr/R: o ij
———
X[aB &L b, 5% BoLy o],
(o3

faiaj(ri 1r_i1rj |r_])

=(ri—rpri—rpin[ri—r;| .
We note that of these three terms ohjyhas a nontrivial
+ (=) (=) % N[ =T = (r; =) mixing of small and large coordinates, and indeed it is the
only term in which the expansiofD1) was employed. Col-

X (ri=T)% Inr, =T = (F—= 1) “(F— 1) In[f = | lecting terms we find

( ) S,,(l‘l,f‘l;...;l',,,i‘,,)=Afl,...,AZPEZL ,,,,, “
:{_eriégjlnri—rf“ir‘“l —5L 4 2riss T

no 1,j
z—"—\
(_) + EE A ey Ajpfaia-f(l'i ,f',-,l'j J‘j)
i#j
+?f‘?f‘1—ﬁ AB=geiB(r, AP, (D1) no i,j
——
x[agal ..... ap+b 501101] Bal ..... ap]
P
and so, ifrj,rj<r;,ri for j=1,..p, i=p+1,..n then the +eAY, . AT 0D,
first order ine of S, will contain three types of terms: ! L
where
no 1,j
/—’—
L= > A%, .. A F e 8 [aB )t
1<Fj=<p ! J ml.o B — A%+l A%g®L--@n
p p+1'"""n Tn,..., o
no 1,j b
——
+b, 8% B“l’z","“"] = > > Cjo Bt
7 j=max0p+l—-n} 4’ P
no i1,j
prm——
= > A%, ..., ASPfaici(r, 8,1, 8;)[aB ) o
lsi#j=<p ! ? A mhe Bp 2 Apﬂl""'AanB?’zl Y:n
no 1,j -
; AYyeens +1 ay, = 2 E d /B e
+b,,6%%% B 2]U]AP{’H,...,AH , i=max{opi—np < p— 2JU
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—_ g(O)=u"PH2LANE, Ay 1 dpU" 2Y) (D)
CP1 ,,,, P<lzj<n APiJrll’ e Annfaiaj(ri )Ty oTj ’i.j) ~
y =2 dj oY) (D).
no i,j j,o’
—— :
X[aByl b, ;6%4B ]
no i To obtain(D2), operate withu?42 on f({1). On the one hand,
» ——— 5 we get
+ Acril o A%gB (1, F,
1<j<pp<i=n PFL né8 .i( )
no 1,j ~ .. ~
) , - - u2§2f(u):2 —J(J+d_2)ijo./Yj’0.r(u)
X[aByy b, 64PB j.o
p
= ;B but on the other hand, we have
j=max{Op+I—n} o ’ ba5e
In these expressions we use the fﬁgtis a fully symmetric u2a?f(0)=u?0’[u” p[AggT,...,Aﬁn]apH---anu”Y,'U(a)]
tensor and therefore can be again expanded in terms of the R . R
basis functionsB, ; ,» with coefficients that depend on the =—P(=p+d=2)f(0)—2p~f (D) +2,,9(0)

large separations. The sums on the right-hand sides run be-
tween j=max0,p+1—n} and p because not all the basis
functions can appear wher+1—n>0. This can be checked

by contracting théB, with (n—1+2)/2 §function. This con- Equating the two expressions, and projecting over the
traction vanishes since it contains a factpy. On the other  (j,o’) sector, we obtain

hand, the contraction results in a tensor with-1—n—2

indices, and therefore all corresponding coefficient§ep

=—p(p+d=2)f(0)+z,,9(0).

+1—n—2 must vanish. To proceed we establish the follow- —j(j+d=2)¢j ;o =—p(p+d—2)¢j ,+ +2,dj o
ing identity:
A +d—-2)—j(j+2-2)] Zy
Zp’] — d /:[p(p H /:ﬂ Pl .
ZJCj'U,_dj’U, . (DZ) 1,0 Zn,l CJvU' Zn,l CJY(T

The identity is proven by the following calculations: Recalling Eq.(4.21), b, j=b, 2, /2, and we may write to

leading order irr/R:
A p+1 ...,AanBal ..... @y

p+1’ nl,o
=01 9"UPUTPLATRS, A0 UTY) (D) Sn(r1.F15..3Maln)
p
:ﬁal...aapupZ/ Cj,a"Yj,U/(u) _ z E C] . al' o ,AapBall"",’aP
e j=max0p+I-n} 5’ 1 P Tpi.o
noi,j
Alprt | ATNBA3:n
o e FeS AT L ADEm(r T [aBl
:(90(3...ﬁapup—Zu—p+2[Aap+1 an] i#]
Pl N
no i,j
Xy o, UTT2Y, (D) p
p+1 n +bp’j5aia]~Bdi,...l¥p’] + 2 2 6ej,a”
E p-2lo j=maxO0p+l-n}
=993 .. 9%yP d .Y ,(0)_
A T N 7R T PR
j.o' xAjl,...,Ang iy P+ O(€)
p
Denote now

= > > (Cjort €€ )

j=maxO0p+l—-n}

f(O)Eu*P[A;Tll,_..,Azn]apﬂ...O’anu“YLg(O) XSy (1115l ,r_p)+O(62).

=2 oY) (0), ,
j.o’ From this follows Eq.(4.25.
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